\(\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}\) chứ
\(\frac{a^2+c^2}{b^2+d^2}=\frac{a}{b}\) chứ
cho \(\frac{a}{b}=\frac{c}{d}\)chung minh rang:
\(\frac{a}{a-b}=\frac{c}{c-d}\) \(\frac{a}{b}=\frac{a+c}{b+d}\) \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\frac{a.b}{c.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) \(\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\)\(\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)
Cho\(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng:
a)\(\frac{a}{3a+b}=\frac{c}{3c+d}\)
b)\(\frac{a\times c}{b\times d}=\frac{a^2+c^2}{b^2+d^2}\)
c)\(\frac{a\times b}{c\times d}=\frac{a^2-b^2}{c^2-d^2}\)
Cho: \(\frac{a}{c}=\frac{c}{b}\). Chứng minh rằng: \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
\(Cho\) \(\frac{a}{b}=\frac{b}{c}.C.m:\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)
Cho \(\frac{a}{c}=\frac{c}{b}\) . C/m rằng \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
Nếu \(\frac{a}{b}=\frac{c}{d}\)
thì \(\frac{a^2+b^2}{b^2+c^2}=^{ }\frac{a}{c}\)
với (b,c khác 0)
Cho \(\frac{a}{b}=\frac{c}{d}\) . Chứg minh rằg:
a, \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
b, \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Giup mk tick dug cko
cho \(\frac{a}{c}\)=\(\frac{c}{b}\).CMR \(\frac{a^2+c^2}{b^2+c^2}=\frac{a}{b}\)
--\(Cho\frac{a}{b}=\frac{3}{4}.TínhA=\frac{a^2+3b^2}{a^2-3b^2}\)
--Cho\(\frac{x}{a+2b+c}=\frac{y}{2a+b-c}=\frac{z}{4a-4b+c}\)
CMR \(\frac{a}{x+2y+z}=\frac{b}{2x+y-z}=\frac{c}{4x-4y+z}\)
Please HELP meeeeeee🙏 🙏 🙏 🙏