\(lim\frac{\sqrt{n+\sqrt{n+1}}}{\sqrt{n-\sqrt{n}}}=lim\frac{\sqrt{1+\sqrt{\frac{1}{n}+\frac{1}{n^2}}}}{\sqrt{1-\sqrt{\frac{1}{n}}}}=\frac{\sqrt{1+\sqrt{0+0}}}{\sqrt{1-\sqrt{0}}}=1\)
\(lim\frac{\sqrt{n+\sqrt{n+1}}}{\sqrt{n-\sqrt{n}}}=lim\frac{\sqrt{1+\sqrt{\frac{1}{n}+\frac{1}{n^2}}}}{\sqrt{1-\sqrt{\frac{1}{n}}}}=\frac{\sqrt{1+\sqrt{0+0}}}{\sqrt{1-\sqrt{0}}}=1\)
a, lim \(\dfrac{\sqrt{n+1}}{1+\sqrt{n}}\)
b, lim \(\dfrac{1+2+...+n}{n^2+2}\)
c, lim \((\sqrt{n^2+n+1}-n)\)
d, lim \((\sqrt{3n-1}-\sqrt{2n-1})\)
e, lim \((\sqrt[3]{n^3+2n^2}-n)\)
g, lim \(\dfrac{(2)^{n}+(3)^{n+2}}{4×(3)^{n}+(2)^{n+3}}\)
\(\lim\limits\frac{\sqrt{n}+\sqrt[3]{n}+\sqrt[4]{n}}{\sqrt{2n+1}}\)
\(lim\left(\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+......+\frac{1}{\sqrt{n^2+n}}\right)\)
lim \(\frac{1}{\sqrt{n^2+1}-\sqrt{n+2}}\)
lim \(\sqrt{n^2+2n+2}+n\)
Tìm \(\lim\limits_{x->-\infty}\)\(\frac{\left|x\right|\sqrt{4x^2+3}}{2x-1}\)
lim \(\sqrt{n}\)(\(\sqrt{n+4}\)-\(\sqrt{n+3}\))
lim (n-2-\(\sqrt{3n^2+n-1}\))
\(\lim\limits_{x->0}\)\(\frac{\sqrt[3]{x^3-2x+1}-1}{x^2+2x}\)
lim \(\frac{\left(2n^2-3n+5\right)\left(2n+1\right)}{\left(4-3n\right)\left(2n^2+n+1\right)}\)
lim \(\frac{\sqrt{n^4+1}}{n}-\frac{\sqrt{4n^6+2}}{n^2}\)
lim \(\frac{2n+3}{\sqrt{9n^2+3}-\sqrt[3]{2n^2-8n^3}}\)
\\(\\lim\\limits_{x\\rightarrow8}\\frac{\\sqrt[3]{x}-2}{2x-16}\\)
\n\n\\(\\lim\\limits_{x\\rightarrow-2}\\frac{\\sqrt{x-3}-1}{\\sqrt[3]{x-6}+2}\\)
\n\n\\(\\lim\\limits_{x\\rightarrow1}\\frac{2x-1-\\sqrt{x^2+2x-2}}{x^2-4x+3}\\)
\na)lim \(\frac{\left(2n+1\right)^2\left(n-1\right)}{\sqrt[3]{n^3+7n-2}}\)
b)lim [(2n-1)\(\sqrt{\frac{2n^2+5}{n^4+n^2+2}}\)]
c)lim [n(\(\sqrt[3]{n^3+n^2}-n\))]
cho f(n) = \(\frac{1}{\sqrt[3]{2}}+\frac{1}{\sqrt[3]{3}}+\frac{1}{\sqrt[3]{4}}+...+\frac{1}{\sqrt[3]{n}}\) nϵN*. GIá trị lim\(\frac{f\left(n\right)}{n^2+1}\) bằng ?