`(x-2)(x^2-2x+4)-x^2(x-4)=0`
`<=>x^3-8-x^3+4x^2=0`
`<=>4x^2=8`
`<=>x^2=2`
`<=>x=+-\sqrt{2}`
`(x-2)(x^2-2x+4)-x^2(x-4)=0`
`<=>x^3-8-x^3+4x^2=0`
`<=>4x^2=8`
`<=>x^2=2`
`<=>x=+-\sqrt{2}`
tìm x,biết :
a) \(x\left(x+5\right)\left(x-5\right)=\left(x+2\right)\left(x^2-2x+4\right)=3\)
b) \(2x^3+2\sqrt{2}x^2+x=0\)
Bài 1: Phân tích đa thức thành nhân tử:
a) \(2x\left(x+1\right)+2\left(x+1\right)\)
b) \(y^2\left(x^2+y\right)-zx^2-zy\)
c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)
d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
e) \(x^2-6xy+9y^2\)
f) \(x^3+6x^2y+12xy^2+8y^3\)
g) \(x^3-64\)
h) \(125x^3+y^6\)
k) \(0,125\left(a+1\right)^3-1\)
t) \(x^2-2xy+y^2-xz+yz\)
q) \(x^2-y^2-x+y\)
p) \(a^3x-ab+b-x\)
đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)
l) \(x^2-x-6\)
i) \(x^4+4x^2-5\)
m) \(x^3-19x-30\)
j) \(x^4+x+1\)
y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)
w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
z) \(\left(x^2-8\right)^2+36\)
u) \(81x^4+4\)
Bài 2 : Tìm x
a)\(\left(2x-1\right)^2-25=0\)
b) \(8x^3-50x=0\)
c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
d) \(3x\left(x-1\right)+x-1=0\)
e) \(2\left(x+3\right)-x^2-3x\) =0
f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
Phân tích các đa thức sau thành nhân tử:
a) \(\left(x^2-x+2\right)^4-3x^2.\left(x^2-x+2\right)^2+2x^4\)
b) \(3.\left(-x^2+2x+3\right)^4-26x^2.\left(-x^2+2x+3\right)-9x^4\)
c) \(\left(x^2-x-1\right)^4+7x^2.\left(x^2-x+1\right)^2+12x^4\)
Làm theo phương pháp đặt ẩn phụ nhé m.n !
Phân tích các đa thức sau thành nhân tử ( đặt biến phụ )
a. \(\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)
b. \(\left(x^2+x\right)^2+4x^2+4x-12\)
c. \(x^4+2x^3+5x^2+4x-12\)
d.\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
e. \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
f. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
a) \(x^2.\left(1-x^2\right)-4-4x^2\)
b)\(\left(1+2x\right)\left(1-2x\right)-\left(x+2\right)\left(x-20\right)\)
c)\(x^2+y^2-x^2y^2+xy-x-y\)
Giải các phương trình sau:
a,\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
b,\(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
Tìm x biết :
a, 2x ( x - 3 ) = \(\left(3-x\right)^2\)
b, \(x^3-49x=0\)
c, \(\left(x+2\right)^2+x^2-4=0\)
d, \(5x^2-5=4\left(x^2-2x+1\right)\)
e, \(x^2-2018x-2019=0\)
Tìm x, biết :
a) \(x^3-\dfrac{1}{4}x=0\)
b) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
c) \(x^2\left(x-3\right)+12-4x=0\)
Phân tích đa thức \(x^4+8x\) thành nhân tử ta được kết quả là :
(A) \(x\left(x+2\right)\left(x^2+4x+4\right)\) (B) \(x\left(x+2\right)\left(x^2+2x+4\right)\)
(C) \(x\left(x+2\right)\left(x^2-4x+4\right)\) (D) \(x\left(x+2\right)\left(x^2-2x+4\right)\)
Hãy chọn kết quá đúng ?
Phân tích thành nhân tử
a) \(\left(2x^2-x-1\right)\left(2x^2-x-4\right)-10\)
b) \(\left(5x^2-2x\right)^2+2x-5x^2-6\)
c) \(\left(x^2+5x\right)^2+10x^2+5x+24\)
d) \(\left(x^2+x-2\right)\left(x^2+9x+18\right)-28\)
e) \(\left(x^2+8x+12\right)\left(x^2+12x+32\right)+16\)