Ta có: \(x^4+8x\\ =x\left(x^3+8\right)\\ =x\left(x+2\right)\left(x^2-2x+4\right)\)
Vậy: Chọn D
Ta có: \(x^4+8x\\ =x\left(x^3+8\right)\\ =x\left(x+2\right)\left(x^2-2x+4\right)\)
Vậy: Chọn D
Phân tích đa thức \(x^2+x-6\) thành nhân tử ta được kết quả là :
(A) \(\left(x+2\right)\left(x-3\right)\) (B) \(\left(x+3\right)\left(x-2\right)\)
(C) \(\left(x-2\right)\left(x-3\right)\) (D) \(\left(x+2\right)\left(x+3\right)\)
Hãy chọn kết quả đúng ?
Phân tích các đa thức sau thành nhân tử ( đặt biến phụ )
a. \(\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)
b. \(\left(x^2+x\right)^2+4x^2+4x-12\)
c. \(x^4+2x^3+5x^2+4x-12\)
d.\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
e. \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
f. \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
Phân tích đa thức thành nhân tử
a. \(5x\left(x-2y\right)+2\left(2y-x\right)^2\)
b. \(7x\left(y-4\right)^2-\left(4-y\right)^3\)
c. \(\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)
d. \(x^2-xz-9y^2+3yz\)
e. \(x^2\left(x^2-6\right)-x^2+9\)
Phân tích đa thức thành nhân tử:
\(\left(x+3\right)^4+\left(x+5\right)^4-2\)
Phân tích đa thức thành nhân tử
a, 5x-10\(x^2\)
b, \(\dfrac{1}{2}x\left(x^2-4\right)+4\left(y+2\right)\)
c, \(x^4-y^6\)
d, \(x^3+y\left(1-3x^2\right)+z\left(3y^2-1\right)-y^3\)
e, \(x^3-4x^2+4x-1\)
f, \(x^2+2xy-8y^2+2xz+14yz+3z^2\)
g, \(x^4+6x^3-12x^2-8x\)
h, \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
Bài 1: Phân tích đa thức thành nhân tử:
a) \(2x\left(x+1\right)+2\left(x+1\right)\)
b) \(y^2\left(x^2+y\right)-zx^2-zy\)
c) \(4x\left(x-2y\right)+8y\left(2y-x\right)\)
d) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)
e) \(x^2-6xy+9y^2\)
f) \(x^3+6x^2y+12xy^2+8y^3\)
g) \(x^3-64\)
h) \(125x^3+y^6\)
k) \(0,125\left(a+1\right)^3-1\)
t) \(x^2-2xy+y^2-xz+yz\)
q) \(x^2-y^2-x+y\)
p) \(a^3x-ab+b-x\)
đ) \(3x^2\left(a+b+c\right)+36xy\left(a+b+c\right)+108y^2\left(a+b+c\right)\)
l) \(x^2-x-6\)
i) \(x^4+4x^2-5\)
m) \(x^3-19x-30\)
j) \(x^4+x+1\)
y) \(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)\)
o) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
ê) \(4a^2b^2-\left(a^2+b^2+c^2\right)^2\)
w) \(\left(1+x^2\right)^2-4x\left(1-x^2\right)\)
z) \(\left(x^2-8\right)^2+36\)
u) \(81x^4+4\)
Bài 2 : Tìm x
a)\(\left(2x-1\right)^2-25=0\)
b) \(8x^3-50x=0\)
c) \(\left(x-2\right)\left(x^2+2+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)
d) \(3x\left(x-1\right)+x-1=0\)
e) \(2\left(x+3\right)-x^2-3x\) =0
f) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
Phân tích các đa thức sau thành nhân tử:
a) \(\left(x^2-x+2\right)^4-3x^2.\left(x^2-x+2\right)^2+2x^4\)
b) \(3.\left(-x^2+2x+3\right)^4-26x^2.\left(-x^2+2x+3\right)-9x^4\)
c) \(\left(x^2-x-1\right)^4+7x^2.\left(x^2-x+1\right)^2+12x^4\)
Làm theo phương pháp đặt ẩn phụ nhé m.n !
a) \(x^2.\left(1-x^2\right)-4-4x^2\)
b)\(\left(1+2x\right)\left(1-2x\right)-\left(x+2\right)\left(x-20\right)\)
c)\(x^2+y^2-x^2y^2+xy-x-y\)
Phân tích đa thức thành nhân tử:
23). \(\left(2a-b\right)^2-4\left(a-b\right)^2\)
24). \(9\left(a+b\right)^2-4\left(a-2b\right)^2\)
25). \(4\left(2a-b\right)^2-16\left(a-b\right)^2\)
26). \(36\left(x-y\right)^2-25\left(2x-1\right)^2\)
27). \(\left(x^2+1\right)^2-4x^2\)
28). \(16x^2-\left(x^2+4\right)\)
29). \(\left(4x^2+\dfrac{1}{4}\right)-4x^2\)
30). \(\left(4x^2+1\right)^2-16x^2\)