Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn thị hà my

\(\left[\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right]:\left[\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right]\)

Nguyễn Lê Phước Thịnh
30 tháng 8 2020 lúc 10:13

Ta có: \(\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right)\)

\(=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\frac{x\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}{\sqrt{xy}\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}-\sqrt{x}\right)}-\frac{\left(x+y\right)\left(y-x\right)}{\sqrt{xy}\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}-\sqrt{x}\right)}\right)\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\left(\frac{x\sqrt{xy}-x^2+y\sqrt{xy}+y^2-\left(y^2-x^2\right)}{\sqrt{xy}\left(y-x\right)}\right)\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\left(\frac{x\sqrt{xy}+y\sqrt{xy}}{\sqrt{xy}\left(y-x\right)}\right)\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(y-x\right)}\)

\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x+y}{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}-\sqrt{x}\right)}\)

\(=\frac{x+y}{\sqrt{y}+\sqrt{x}}\cdot\frac{\left(\sqrt{y}+\sqrt{x}\right)\left(\sqrt{y}-\sqrt{x}\right)}{x+y}\)

\(=\sqrt{y}-\sqrt{x}\)


Các câu hỏi tương tự
Nguyễn Oanh
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Phương Phương
Xem chi tiết
Phạm Thị Phương
Xem chi tiết
DRACULA
Xem chi tiết
Tạ Hữu Việt
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Akira Yuuki
Xem chi tiết
Toán Chuyên Học
Xem chi tiết