Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Linh Chi

Cho biểu thức: \(P=\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)

a) Rút gọn P

b) Chứng minh P \(\ge\) 0

Hoàng Anh Thư
17 tháng 6 2019 lúc 22:33

tớ ra kết quả là 2+\(\frac{5\sqrt{xy}}{x-\sqrt{xy}+y}\) mà thấy số xấu quá :(

Nguyễn Việt Lâm
18 tháng 6 2019 lúc 4:46

ĐKXĐ:

\(P=\left(\frac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{x\sqrt{x}-y\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right).\frac{\left(\sqrt{x}+\sqrt{y}\right)}{x-\sqrt{xy}+y}\)

\(=\left(\frac{x\sqrt{y}-y\sqrt{x}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right).\left(\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\right)\)

\(=\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)}.\frac{1}{\left(x-\sqrt{xy}+y\right)}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

\(P=\frac{\sqrt{xy}}{x-\sqrt{xy}+\frac{y}{4}+\frac{3y}{4}}=\frac{\sqrt{xy}}{\left(\sqrt{x}-\frac{\sqrt{y}}{2}\right)^2+\frac{3y}{4}}\)

Do \(\left\{{}\begin{matrix}\sqrt{xy}\ge0\\y\ge0\end{matrix}\right.\) \(\Rightarrow P\ge0\) \(\forall x;y\)