có pt (1) \(\Leftrightarrow\left(x^2+xy\right)^2=2x+9\Leftrightarrow\left(6x+6\right)^2=2x+9\)
đây là pt bậc 2 thì dễ rồi nhá !
có pt (1) \(\Leftrightarrow\left(x^2+xy\right)^2=2x+9\Leftrightarrow\left(6x+6\right)^2=2x+9\)
đây là pt bậc 2 thì dễ rồi nhá !
Giải các hệ phương trình sau:
1) \(\left\{{}\begin{matrix}3y^2+1+2y\left(x+1\right)=4y\sqrt{x^2+2y+1}\left(1\right)\\y\left(y-x\right)=3-3y\left(2\right)\end{matrix}\right.\)
Hd: Biến đổi pt (1) về dạng \(A^2-B^2=0\)
2)\(\left\{{}\begin{matrix}2x+\left(3-2xy\right)y^2=3\left(1\right)\\2x^2-x^3y=2x^2y^2-7xy+6\left(2\right)\end{matrix}\right.\)
Hd: Biến đổi pt (1) về \(2x\left(1-y^3\right)=3\left(1-y^2\right)\)
3)\(\left\{{}\begin{matrix}x^4+2xy+6y-\left(7+2y\right)x^2=-9\left(1\right)\\2yx^2-x^3=10\left(2\right)\end{matrix}\right.\)
Hd:Biến đổi pt (1) có nhân tử chung là \(x^2-x-3\)
1, Giải các hệ phương trình sau
a, \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=26\\x+y=6\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}2x^2+x-y=0\\xy+3y-5x=7\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}\left(x-1\right)^2=1-y\\\left(x^2-y\right)^2=2xy\left(1+x\right)\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}x^2y+y^2x=2\\x^3+y^3+6=8x^2y^2\end{matrix}\right.\)
Giải hệ PT:
\(\left\{{}\begin{matrix}x^3-2x^2y-4x=y^3-2xy^2-4y\\x^3+2y^3=4x+3y\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}2x+\left(3-2xy\right)y^2=3\\2x^2-x^3y=2x^2y^2-7xy+6\end{matrix}\right.\)
giải hệ pt \(\left\{{}\begin{matrix}x^3-4y-2x^2y+2x=0\\\sqrt{2y-2}+\sqrt{4-x}-x^2+6x-11=0\end{matrix}\right.\)
Giải PT và HPT:
1)\(\left\{{}\begin{matrix}xy+x+y=3\\\frac{1}{x^2+2x}+\frac{1}{y^2+2y}=\frac{2}{3}\end{matrix}\right.\)
2)\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)
3)\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\9xy\left(3x-y\right)+6=26x^3-2y^3\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
giải hệ pt: \(\left\{{}\begin{matrix}x^2-2xy+x-2y+3=0\\y^2-x^2+2xy+2x-2=0\end{matrix}\right.\)
Giải hệ pt và pt sau:
a.\(\left\{{}\begin{matrix}\left(2x-3\right)\cdot\left(2y+4\right)=4x\cdot\left(y-3\right)+54\\\left(x+1\right)\cdot\left(3y-3\right)=3y\left(x+1\right)-12\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x+y-1=0\\x^2+xy+3=0\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2x-3y=5\\x^2-y^2=40\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}3x+2y=36\\\left(x-2\right)\left(y-3\right)=18\end{matrix}\right.\)
e.\(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\) . Tìm m để hệ có nghiệm (x;y) t/m x\(^2\)-2y\(^2\)=1
f. \(\frac{t^2}{t-1}+t=\frac{2t^2+5t}{t+1}\)
g.\(\frac{x^2+2x-3}{x^2-9}+\frac{2x^2-2}{x^2-3x+2}=8\)
Giải hệ pt
a) \(\left\{{}\begin{matrix}x^2-4xy+y^2=1\\y^2-3xy=4\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^2-3xy+y^2=3\\x^2+2xy-2y^2=6\end{matrix}\right.\)