Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
bach nhac lam

\(\left\{{}\begin{matrix}a,b,c>0\\abc=1\end{matrix}\right.\) Cmr: \(\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}\le1\)

Akai Haruma
1 tháng 12 2019 lúc 8:48

Bạn đã làm được rồi nhưng mình vẫn xin phép up lời giải nếu ai cần tham khảo:

Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho $(a,b,c)=(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})$

Khi đó, bài toán trở thành:

Cho $x,y,z>0$. CMR $A=\frac{y}{2y+x}+\frac{z}{2z+y}+\frac{x}{2x+z}\leq 1$

Thật vậy:

\(2A=\frac{2y}{2y+x}+\frac{2z}{2z+y}+\frac{2x}{2x+z}=1-\frac{x}{2y+x}+1-\frac{y}{2z+y}+1-\frac{z}{2x+z}\)

\(=3-\left(\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\right)\)

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}=\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}\geq \frac{(x+y+z)^2}{x^2+2xy+y^2+2yz+z^2+2xz}=1\)

\(\Rightarrow 2A\leq 3-1=2\Rightarrow A\leq 1\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$

Khách vãng lai đã xóa
bach nhac lam
30 tháng 11 2019 lúc 23:48

k cần nx ạ hehe

Khách vãng lai đã xóa

Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
nguyễn minh
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Nguyễn Thị Kim Tuyến
Xem chi tiết
Đăng Vu Vài
Xem chi tiết