Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyễn minh

cho \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right.\).CMR: \(\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}\)

đào danh phước
7 tháng 1 2020 lúc 16:38

cho {a,b,c>0a+b+c=abc{a,b,c>0a+b+c=abc\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right..CMR: ba2+cb2+ac2+3≥(1a+1b+1c)2+√3ba2+cb2+ac2+3≥(1a+1b+1c)2+3\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}

Khách vãng lai đã xóa
đào danh phước
19 tháng 1 2020 lúc 19:10

cho {a,b,c>0a+b+c=abc{a,b,c>0a+b+c=abc\left\{{}\begin{matrix}a,b,c>0\\a+b+c=abc\end{matrix}\right..CMR: ba2+cb2+ac2+3≥(1a+1b+1c)2+√3ba2+cb2+ac2+3≥(1a+1b+1c)2+3\frac{b}{a^2}+\frac{c}{b^2}+\frac{a}{c^2}+3\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2+\sqrt{3}

Khách vãng lai đã xóa
nguyễn minh
21 tháng 1 2020 lúc 18:01

Akai Haruma

Khách vãng lai đã xóa

Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Lê Thị Thục Hiền
Xem chi tiết
Nguyễn Thị Kim Tuyến
Xem chi tiết
bach nhac lam
Xem chi tiết