Tìm x biết :
\(\left(8x^2-2x+7\right)\left(4x-6x^2-3\right)=\left(6x^2+3x+4\right)\left(9x-8x^2-6\right)\)
Help me vs !!
bài 1 giải phương trình
\(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x^2-4}\)
\(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)
\(\frac{3}{1-4x}=\frac{2}{4x+1}-\frac{8+6x}{16x^2-1}\)
\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
Làm tính nhân: a. \(\left(3x^{2m-1}-\dfrac{3}{7}y^{3n-5}+x^{2m}y^{3m}-3y^2\right)8x^{3-2m}y^{6-3n}\)
b.\(\left(2x^{2n}+3x^{2n-1}\right)\left(x^{1-2n}-3x^{2-2n}\right)\)
Bài 1: Tìm GTNN của biểu thức:
\(A=x^2+3x+7\)
\(B=2x^2-8x\)
\(C=x^2-4x+y^2-8y+6\)
\(D=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
Bài 2: Tìm GTLN của biểu thức:
\(A=11-10x-x^2\)
\(B=-3x\left(x+3\right)-7\)
\(C=5-x^2+2x-4y^2-4y\)
\(D=\left|x-4\right|\left(2-\left|x-4\right|\right)\)
1. a, tính gt nhỏ nhất của biểu thức
A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b, tính gt lớn nhất của biểu thúc
B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
2. cho bt Q=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
Tìm x biết:
\(\left(2x-3\right)^2-\left(3x+2\right)^2=5x\left(2-x\right)\)
\(8x^3-12x^2+6x-1=0\)
Giải phương trình
\(\left(x^2+x+1\right)^2=3\left(x^4+x^2+1\right)\)
\(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)
\(2x\left(8x-1\right)^2\left(4x-1\right)=9\)
\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
Giúp tớ với
a)\(\frac{\left(x-4\right)^2}{7}-\frac{\left(x+4\right)^2}{5}\ge\frac{2\left(x^2-3\right)}{35}\)
b)\(\frac{\left(2x-1\right)^2}{2}-\frac{\left(2x+1\right)^2}{4}< \left(x-3\right)^2\)
c)\(|-5x+1|=6-3x\)
d)\(6\cdot|x+3|=-8x\)
e)\(7\cdot|x+1|=6-x\)
Câu 2: Giải phương trình:
a,\(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
b) 2x3 – 5x2 + 3x = 0
c) \(\frac{x}{2x-6}+\frac{x}{2x+2}-\frac{2x}{\left(x+1\right)\left(x-3\right)}=0\)