Giải các phương trình sau
e) \(\frac{1}{2}\left(x+1\right)+\frac{1}{4}\left(x+3\right)=3-\frac{1}{3}\left(x+2\right)\)
f)(4-3x)(10x-5)=0
g) (x-3)(2x-1)=(2x-1)(2x+3)
h) 9 - x^2 = 0
Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:
\(a,\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(b,\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
Bài 3: Giải các phương trình sau bằng cách đưa về dạng ax+b =0 :
a) \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
b) \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{5}\)
c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x-1\right)}{7}-5\)
d) \(14\frac{1}{2}-\frac{2\left(x+3\right)}{5}=\frac{3x}{2}-\frac{2\left(x-7\right)}{3}\)
bài 3,Giải PT
a,\(\frac{3}{2}.\left(x-\frac{5}{4}\right)-\frac{5}{8}=x\\ \)
b,\(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
c,\(\frac{10x+3}{12}=1+\frac{6+8x}{9}\)
1,Giải Pt
a,\(\frac{3x-7}{2}+\frac{x+1}{3}=-16\)
b,\(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
c,\(\frac{7-3x}{12}+\frac{3}{4}=2\left(x-2\right)+\frac{5\left(5-2x\right)}{6}\)
e,\(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
Giải các phương trình
a) \(\frac{15x}{x^2+3x-4}=\frac{12}{x+4}+\frac{4}{x-1}+1\)
b) \(x\left(x-2\right)\left(x-1\right)\left(x+1\right)=24\)
c) \(\frac{x^2-2x+2}{x-1}+\frac{x^2-8x+20}{x-4}=\frac{x^2-4x+6}{x-2}+\frac{x^2-6x+12}{x-3}\)
Giải các bất phương trình sau :
a) \(15-2x\left(1-x\right)< 2x^2-4x+5\)
b) \(x^2-\frac{x\left(3x+2\right)}{3}< \frac{x-6}{3}\)
c) \(1+\frac{x+4}{3}< x-\frac{x-3}{2}\)
d) \(\left(\frac{2x+1}{2}\right)^2+\frac{3x\left(1-x\right)}{3}-\frac{5x}{4}\le1\)
1) \(\frac{3x-1}{4}+\frac{2x-3}{3}=\frac{x-1}{2}\) Mc : 12
\(\Leftrightarrow\) \(\frac{3.\left(3x-1\right)}{12}+\frac{4.\left(2x-3\right)}{12}=\frac{6.\left(x-1\right)}{12}\)
\(\Leftrightarrow\) 9x - 3 + 8x - 12 = 6x - 6
\(\Leftrightarrow\) 9x + 8x - 6x = 3 + 12 - 6
\(\Leftrightarrow\) 11x = 9
\(\Leftrightarrow\) x = 0,8
Vậy S = {0,8}
2) \(\frac{x+1}{2}-\frac{x+3}{12}=3-\frac{5-3x}{3}\) Mc : 12
\(\Leftrightarrow\) \(\frac{6.\left(x+1\right)}{12}-\frac{x+3}{12}=\frac{12.3}{12}-\frac{4.\left(5-3x\right)}{12}\)
\(\Leftrightarrow\) 6x + 6 - x + 3 = 36 - 20 - 12x
\(\Leftrightarrow\) 6x - x + 12x = -6 - 3 + 36 - 20
\(\Leftrightarrow\) 17x = 7
\(\Leftrightarrow\) x = \(\frac{7}{17}\)
Vậy S = {\(\frac{7}{17}\)}
3) x - \(\frac{x+1}{3}\) = \(\frac{2x-1}{5}\) Mc : 15
\(\Leftrightarrow\) \(\frac{15.x}{15}-\frac{5.\left(x+1\right)}{15}=\frac{3.\left(2x-1\right)}{15}\)
\(\Leftrightarrow\) 15x - 5x - 5 = 6x - 3
\(\Leftrightarrow\) 15x - 5x - 6x = 5 - 3
\(\Leftrightarrow\) 4x = 2
\(\Leftrightarrow\) x = \(\frac{2}{4}=\frac{1}{2}\)
Vậy S = {\(\frac{1}{2}\)}
4) \(\frac{2x+7}{3}-\frac{x-2}{4}=-2\) Mc : 12
\(\Leftrightarrow\) \(\frac{4.\left(2x+7\right)}{12}-\frac{3.\left(x-2\right)}{12}=\frac{12.\left(-2\right)}{12}\)
\(\Leftrightarrow\) 8x + 28 -3x + 6 = -24
\(\Leftrightarrow\) 8x - 3x = -28 - 6 -24
\(\Leftrightarrow\) 5x = -58
\(\Leftrightarrow\) x = -11,6
Vậy S = {-11,6}
5) \(\frac{2x-3}{4}-\frac{4x-5}{3}=\frac{5-x}{6}\) Mc : 12
\(\Leftrightarrow\) \(\frac{3.\left(2x-3\right)}{12}-\frac{4.\left(4x-5\right)}{12}=\frac{2.\left(5-x\right)}{12}\)
\(\Leftrightarrow\) 6x - 9 - 16x + 20 = 10 - 2x
\(\Leftrightarrow\) 6x - 16x + 2x = 9 - 20 + 10
\(\Leftrightarrow\) -8x = -1
\(\Leftrightarrow\) x = \(\frac{1}{8}\)
Vậy S = {\(\frac{1}{8}\)}
6) \(\frac{12x+1}{4}=\frac{9x+1}{3}-\frac{3-5x}{12}\) Mc : 12
\(\Leftrightarrow\frac{3.\left(12x+1\right)}{12}=\frac{4.\left(9x+1\right)}{12}-\frac{3-5x}{12}\)
\(\Leftrightarrow\) 36x + 3 = 36x + 4 - 3 + 5x
\(\Leftrightarrow\) 36x - 36x - 5x = -3 + 4 - 3
\(\Leftrightarrow\) -5x = -2
\(\Leftrightarrow x=\frac{2}{5}\)
7) \(\frac{x+6}{4}\) - \(\frac{x-2}{6}-\frac{x+1}{3}=0\) Mc : 12
\(\Leftrightarrow\) \(\frac{3.\left(x+6\right)}{12}-\frac{2.\left(x-2\right)}{12}-\frac{4.\left(x+1\right)}{12}=0\)
\(\Leftrightarrow\) 3x + 18 - 2x + 4 - 4x - 4 = 0
\(\Leftrightarrow\) 3x - 2x - 4x = -18 - 4 + 4
\(\Leftrightarrow\) -3x = -18
\(\Leftrightarrow\) x = 6
Vậy S = {6}
8) x\(^2\) - x - 6 = 0
\(\Leftrightarrow\) x\(^2\) + 2x - 3x - 6 = 0
\(\Leftrightarrow\) x.(x + 2) - 3.(x + 2) = 0
\(\Leftrightarrow\) (x - 3).(x + 2) = 0
\(\Leftrightarrow\) x - 3 = 0 hoặc x + 2 = 0
\(\Leftrightarrow\) x = 3 hoặc x = -2
Vậy S = {3; -2}
Bài 1:Giải Phương trình:
a) \(\frac{x-1}{x}+\frac{1-2x}{x^2+x}=\frac{1}{x+1}\)
b)\(\frac{13}{\left(x-3\right).\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)
c) \(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)
d)\(\frac{x^2+2x}{x^2+1}-2x=0\)
Bài 2: Giải phương trình (x –1)(x2 +3x –2 ) – (x3 –1) =0
Bài 3: Giải phương trình (x –1)(x2 +3x –2 ) – (x3 –1) =0
Bài 4:
Bằng cách phân tích vế trái thành nhân tử rồi giải các phương tr ình sau:
a) 2x(x – 3) +5(x – 3) = 0
b) (x2 – 4) +(x –2)(3 –2x ) = 0
c) x3 –3x2 + 3x – 1 = 0
d) x(2x –7) – 4x + 14 = 0