a) Ta có: \(x^4+4\)
\(=\left(x^2\right)^2+2\cdot x^2\cdot2+4-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
b) Ta có: \(x^4+64\)
\(=\left(x^2\right)^2+8^2+16x^2-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)
c) Ta có: \(64x^4+y^4\)
\(=\left(8x^2\right)^2+\left(y^2\right)^2+16x^2y^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2-4xy+y^2\right)\left(8x^2+4xy+y^2\right)\)
d) Ta có: \(x^3-x^2-4\)
\(=x^3+x^2+2x-2x^2-2x-4\)
\(=x\left(x^2+x+2\right)-2\left(x^2+x+2\right)\)
\(=\left(x^2+x+2\right)\left(x-2\right)\)
e) Ta có: \(x^3-7x-6\)
\(=x^3-x-6x-6\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
\(=\left(x+1\right)\left(x^2-3x+2x-6\right)\)
\(=\left(x+1\right)\left(x-3\right)\left(x+2\right)\)
f) Ta có: \(x^4+x^2+1\)
\(=x^4+2x^2+1-x^2\)
\(=\left(x^2+1\right)^2-x^2\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\)