(sinx+1)(sinx-\(\sqrt{2}\))=0⇔\(\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}\left(loai\right)\end{matrix}\right.\Leftrightarrow\sin x=\frac{-\pi}{2}+2k\pi\)\(-2017\le x\le2017\)\(\Leftrightarrow-320\le k\le321\)
có 642 số
(sinx+1)(sinx-\(\sqrt{2}\))=0⇔\(\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}\left(loai\right)\end{matrix}\right.\Leftrightarrow\sin x=\frac{-\pi}{2}+2k\pi\)\(-2017\le x\le2017\)\(\Leftrightarrow-320\le k\le321\)
có 642 số
Hỏi trên đoạn [-2017;2017], phương trình (sinx +1)(sinx-\(\sqrt{2}\)) =0 có tất cả bao nhiêu nghiệm?
A.4034 B.4035 C.641 D.642
tìm tất cả các giá trị của m để phương trình sinx=2m có 2 nghiệm phân biệt trên đoạn 0; \(\pi\)
tìm tất cả các giá trị của m để phương trình \(\dfrac{sinx+2}{cosx}=m\) vô nghiệm
tìm tát cả các nghiệm x thuộc (2009,2011) của phương trình : |cos|-|sinx|-cos2x*căn(1+sin2x) = 0
Tìm tất cả các giá trị của tham số m để pt có nghiệm :
a. sinx - cosx = m
b. sinx - (2m-1)cosx = m+2
Cho phương trình (cosx-1)(sinx+m)=0. Tìm các giá trị m để pt có đúng 2 nghiệm phân biệt thuộc \(\left[0;\pi\right]\)
tìm tất cả các nghiệm thuộc đoạn [ -pi;pi] của pt sinx - căn bậc hai(3)cosx=1
Tìm m để phương trình sau có 5 nghiệm phân biệt thuộc khoảng \(\left(-\dfrac{\pi}{2};3\pi\right)\)
2sin2x - (5m + 1)sinx + 2m2 + 2m = 0