Số hạng tổng quát trong khai triển \(\left(x+1\right)^n\) :\(C^k_nx^k\)
\(\Rightarrow\) hệ số của \(x^5\) trong khai triển trên:
\(\sum\limits^{12}_{n=5}C^5_n=1716\)
Số hạng tổng quát trong khai triển \(\left(x+1\right)^n\) :\(C^k_nx^k\)
\(\Rightarrow\) hệ số của \(x^5\) trong khai triển trên:
\(\sum\limits^{12}_{n=5}C^5_n=1716\)
1.tìm max A=(\(\frac{x}{x+2020}\))\(^2\) với x>0
2. tìm min C= \(\frac{\left(4x+1\right)\left(4+x\right)}{x}\) với x dương
3.cho 3a+5b=12. tìmmin B=ab
4.tìm min \(x^2-x+4+\frac{1}{x^2-x}\)
5. cho x,y là 2 số thỏa mãn \(2x^2+\frac{1}{x^2}+\frac{y}{4}=4\).tìm min max của xy
6. cho a,b>0 và a+b=1. tìm min M=\(\left(1+\frac{1}{a}\right)^2\left(1+\frac{1}{b}\right)^2\)
1, Tìm số lượng k có x trong khai triển : ( x^3 + 1/x^3 )18. 2, 10 quyển sách toán , 6 quyển sách lý , 5 hóa ( khác nhau )
A, chọn 7 quyển ngẫu nhiên có bao nhiêu cách
B, tính xác xuất chọn 7 quyển trong đó có ít nhất 2 toán , 2 lý , 2 hóa
Giải hệ pt :
\(\dfrac{A\dfrac{x}{y}}{P_{x+1}}+C\dfrac{y-x}{y}=126\\ P_{x+1}=720\)
Giải hệ PT:
\(\left\{{}\begin{matrix}x+2y=3\\\sqrt{y+3}+\sqrt{x+7y+1}+y^3+y=10\end{matrix}\right.\)
Cho X = \(\left\{1;2;...;9\right\}\), gọi S là tập hợp các số tự nhiên gồm 4 chữ số lập từ S. Chọn ngẫu nhiên 2 số trong S. Tính xác suất để được ít nhất 1 số thõa mãn tổng các chữ số chia hết cho 11
Với n là số nguyên dương thỏa mãn \(A^k_n+2A^2_n=100\) (\(A^k_n\) là số các chỉnh hợp chập k của tập hợp có n phần tử). Tìm hệ số của số hạng chứa x5 trong khai triển của biểu thức (1+3x)2n
\(\lim\limits_{x\rightarrow1}\)-\(\frac{x^3-1}{|1-x|}\)
Tìm m để pt có nghiệm
1. (m+1)sinx-3cosx=m
Tìm m để pt vô nghiệm
3sin2x+4msin2x-4=0
3. Giải pt lượng giác
(2cosx-sinx)(1+sinx)=cos2x
Cosxcosx/2cos3x/2-sinxsinx/2sin3x/2=1/2
Tìm số hạng không chứa x trong khai triển nhị thức New-tơn của \(\left(2x^2-\dfrac{3}{x}\right)^n\) biết rằng
\(C^1_n+2C^2_n+3C^3_n+...+nC^n_n=256n\)