Cho phương trình \(x^2-2\left(m+4\right)x+m^2-8=0\)
Tìm m để phương trình thỏa mãn \(x_1,x_2\) thỏa mãn:
\(A=x^2_1+x^2_2-x_1-x_2\) đạt giá trị nhỏ nhất.
\(B=x^2_1+x^2_2-x_1x_2\) đạt giá trị nhỏ nhất.
Cho hai hàm số bậc nhất y=(k+1)x+2 và y=(3-k) x-2) a) Với giá trị nào của k thì thì đồ thị của hai hàm số là hai đường thẳng song song với nhau? b) Với giá trị nào của k thì đồ thị của hai hàm số là hai đường thẳng cắt nhau? c) Hai đường thẳng nói trên có thể trùng nhau được không? Vì sao?
Cho pt x^2-3x+2m+2=0 a)giải pt khi m=0 b)Tìm m để pt có nghiệm c)Gọi x1,x2 là 2 nghiệm của pt .Tìm m để A=x1^2+x2^2+x1^2.x2^2 đạt giá trị nhỏ nhất ,tìm giá trị nhỏ nhất đó
cho hàm số: \(y=\left(2m-1\right)x+n\) với \(\left(m\ne\dfrac{1}{2}\right)\)
Tìm giá trị của m, n biết n=2m và đồ thị hàm số \(y=\left(2m-1\right)x+n\) cắt đồ thị hàm số \(y=\dfrac{1}{2}x-4\) tại một điểm trên trục tung
Cho x,y là 2 số dương thay đổi.Tìm giá trị nhỏ nhất của biểu thức:
\(S=\dfrac{\left(x+y\right)^2}{x^2+y^2}+\dfrac{\left(x+y\right)^2}{xy}\)
Cho 2 hàm số bậc nhất y=-2x+k và y=3x-k+4. Với giá trị nào của k thì: a) Đồ thị của các hàm số trên cắt nhau tại một điểm nằm trên trục tung. b) Đồ thị của các hàm số trên cắt nhau tại một điểm nằm trên trục hoành
1) Rút gọn M = \(\left(\frac{x+\sqrt{y}+\sqrt{xy}-1}{\sqrt{x}+1}+1\right).\left(\sqrt{x}-\sqrt{y}\right)\) ( với x≥0 ; y≥0)
2) Cho pt : x2 - 2 (m -1)x + m - 5 = 0 ( với x là ẩn và m là tham số )
a) giải pt khi m = 2
b) chứng minh phương trình luôn có 2 nghiện phân biệt x1 , x2 với mọi giá trị của m . Tìm m để biểu thức P = x12 + x22 đạt giá trị nhỏ nhất
Cho PT \(-x^2+\left(2m-1\right)x+m-m^2=0\) (1). Tìm m để biểu thức \(B=x^2_1+x_2^2+4\) đạt giá trị nhỏ nhất ?
Cho phương trình: x2 -2(m+4)x +m2 -8=0 a) Xác định tham số m để phương trình có nghiệm x1, x2 . b) Hãy lập hệ thức liên hệ giữa x1 và x2 không phụ thuộc vào m . c) Tìm tất cả giá trị của tham số m để A= x12 +x22 - x1x2 đạt gia trị nhỏ nhất . Mọi người giúp em với :(