Cho góc nhọn α
a) Rút gọn biểu thức S=\(\cos^2\alpha+tg^2.\cos^2\alpha\)
b) Chứng minh:
\(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha.\cos\alpha}=4\)
Help me plsssssssssss
CMR
a)\(\frac{1+\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1-\cos\alpha}\)
b)\(\frac{\tan\alpha+1}{\tan\alpha-1}=\frac{1+\cot\alpha}{1-\cot\alpha}\)
c) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
d)\(\frac{1-4\sin^2\alpha.\cos^2\alpha}{\left(\sin\alpha-\cos\alpha\right)^2}=\left(\sin\alpha+\cos\alpha\right)^2\)
Đơn giản các biểu thức sau:
(1-\(Cos\alpha\)).\(\left(1+Cos\alpha\right)\)
\(1+sin^2\alpha+cos^2\alpha\)
\(sin^4\alpha+cos^4\alpha+2sin^2\alpha.cos^2\alpha\)
\(tan^2\alpha-sin^2\alpha.tan^2\alpha\)
\(cos^2\alpha+tan^2\alpha.cos^2\alpha\)
\(tan^2\alpha.\left(2cos^2\alpha+sin^2\alpha-1\right)\)
Gấp!!!:))))
Chứng minh rằng với α là góc nhọn thì giá trị của các biểu thức sau không phụ thuộc vào độ lớn của α
A=\(\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
B=\(\sin^4\alpha+\cos^4\alpha-1+2\sin^2\alpha.\cos^2\alpha\)
C=\(\sin^4\alpha-\cos^4\alpha+2\cos^2\alpha-1\)
Rút gọn .
\(A=\dfrac{1+2\sin\alpha\cos\alpha}{\sin\alpha+\cos\alpha}\)
\(B=\left(\sin\alpha+\cos\alpha\right)^2-\left(\cos\alpha-\sin\alpha\right)^2\)
\(C=\dfrac{\left(\sin\alpha-\cos\alpha\right)^2-\left(\sin\alpha+\cos\alpha\right)}{\sin\alpha\cos\alpha}\)
Mấy bạn giúp đỡ được phần nào thì giúp , giúp hết thì tốt quá .
\(\sin^4\alpha.\left(1+2\cos^2\alpha\right)+\cos^4\alpha.\left(1+2\sin^2\alpha\right)\)
Rút gọn biểu thức:
\(A=\sin^210+\sin^220+\sin^230+\sin^280+\sin^270+\sin^260\)
\(B=\left(1+\tan^2\alpha\right)\left(1-\sin^2\alpha\right)+\left(1+\cot^2\alpha\right)\left(1-\cos^2\alpha\right)\)
a) \(\cos^2\)α+ \(\cos^2\)β + \(\cos^2\)α.\(\sin^2\)β +\(^{ }\sin^2\)α
b) 2(\(\sin\)α - \(\cos\)α)\(^2\) - ( \(\left(\sin\alpha+\cos\alpha\right)^{2^{ }}+\left(\sin\alpha.\cos\alpha\right)\)
c) \(\left(\tan\alpha-\cot\alpha\right)^2-\left(\tan\alpha+\cos\alpha\right)^2\)
D = \(\dfrac{\left(\sin\alpha+\cos\alpha\right)^2-\left(\sin\alpha-\cos\alpha\right)^2}{\sin\alpha\cdot\cos\alpha}\)
Giúp mk vs please