\(A=\left(x+3y-5\right)^2-6xy+27\)
\(=x^2+9y^2+25+6xy-30y-10x-6xy+27\)
\(=x^2-10x+25+9y^2-30y+25+2\)
\(=\left(x-5\right)^2+\left(3y-5\right)^2+2\)
\(\left(x-5\right)^2\ge0\)
\(\left(3y-5\right)^2\ge0\)
\(\left(x-5\right)^2+\left(3y-5\right)^2+2\ge2\)
\(MinA=2\Leftrightarrow x=5;y=\frac{5}{3}\)
\(A=\left(x+3y-5\right)^2-6xy+27\)
\(=x^2+9y^2+25+6xy-10x-30y-6xy+27\)
\(=\left(x^2-10x+25\right)+\left(9y^2-30y+25\right)+2\)
\(=\left(x-5\right)^2+\left(3y-5\right)^2+2\ge2\)
Dấu = khi \(\begin{cases}\left(x-5\right)^2=0\\\left(3y-5\right)^2=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=5\\y=\frac{5}{3}\end{cases}\)
Vậy MinA=2 khi \(\begin{cases}x=5\\y=\frac{5}{3}\end{cases}\)