\(G\sqrt{2}=\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2\)
\(\Leftrightarrow G\sqrt{2}=\sqrt{5}+1+3-\sqrt{5}-2=2\)
hay G=căn 2
\(G\sqrt{2}=\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2\)
\(\Leftrightarrow G\sqrt{2}=\sqrt{5}+1+3-\sqrt{5}-2=2\)
hay G=căn 2
Tính:
a) \(\left(2\sqrt{5}-\sqrt{7}\right).\left(2\sqrt{5}+\sqrt{7}\right)\)
b)\(\left(\sqrt{5-2\sqrt{6}}+\sqrt{2}\right).\sqrt{3}\)
c)\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
d)\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
e)\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)
g)\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}\)
F = \(\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(1-\sqrt{2}\right)^2}\)
G = \(\sqrt{\left(5+\sqrt{7}\right)^2}-\sqrt{\left(2-\sqrt{7}\right)^2}\)
H = \(\sqrt{\left(3-\sqrt{10}\right)^2}+\sqrt{\left(2-\sqrt{10}\right)^2}\)
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
Tính ;
a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}.}\sqrt{2-\sqrt{2+\sqrt{2}}}\)
b) \(\sqrt{47+\sqrt{5}}.\sqrt{7-\sqrt{2+\sqrt{5}}}.\sqrt{7+\sqrt{2+\sqrt{5}}}\)
c) \(\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{3}}}}.\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{3}}}}\)
d) \(\sqrt{31+\sqrt{2}}.\sqrt{6+\sqrt{5+\sqrt{2}}}\sqrt{3+\sqrt{3+\sqrt{5+\sqrt{2}}}}.\sqrt{3-\sqrt{3+\sqrt{5+\sqrt{2}}}}\)
Tinh
\(a,\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
\(b,\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)
\(c,\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)
\(d,\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)
\(e,\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4\)
\(f,\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
\(g,\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right)\frac{1}{\left(\sqrt{2}+1\right)^2}\)
Tính
\(A=\sqrt{20}-3\sqrt{8}+5\sqrt{45}\)
\(B=\dfrac{30}{\sqrt{7}-1}+\dfrac{15}{\sqrt{7}+2}\)
\(C=\left(3-\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\right)\left(3+\dfrac{5+\sqrt{5}}{\sqrt{5}+1}\right)\)
\(D=\sqrt{\left(3-\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(E=\sqrt{7-4\sqrt{3}}-\sqrt{3+2\sqrt{3}}\)
* Trục căn thức ở mẫu
a. \(\dfrac{7}{\sqrt{5}-\sqrt{3}-\sqrt{7}}\)
b. \(\dfrac{5}{2-\sqrt{3}-\sqrt{5}}\)
c. \(\dfrac{59}{\sqrt[3]{5}+\sqrt{3}-\sqrt{2}}\)
* Trục căn thức ở mẫu
a. \(\dfrac{7}{\sqrt{5}-\sqrt{3}-\sqrt{7}}\)
b. \(\dfrac{5}{2-\sqrt{3}-\sqrt{5}}\)
c. \(\dfrac{59}{\sqrt[3]{5}+\sqrt{3}-\sqrt{2}}\)