Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số).Tìm tất cả các giá trị của m để(d) cắt (P) tại hai điểm phân biệt A, B sao cho OI= căn 10,với I là trung điểm của đoạn thẳng AB.
Cho parabol (P): \(y=x^2\) và đường thẳng (d): \(y=mx+2\) ( m là tham số).
a) Chứng minh rằng với mọi giá trị của m thì đường thẳng (d)luôn cắt parabol (P) tại hai điểm phân biệt M và N.
b) Gọi A là giao điểm của đường thẳng (d) với trục tung. Tìm tất cả các giá trị của m để M và N đối xứng với nhau qua điểm A.
Trong mặt phẳng tọa độ Oxy , cho đường thẳng (d)y=mx+5
a) Chứng minh rằng đường thẳng (d) luôn đi qua điểm A(0;5) với mọi m
b) Tìm tất cả các giá trị của m để đường thẳng (d) cắt parabol (P):y=x^2 tại hai điểm phân biệt có hoành độ lần lượt là \(x_1,x_2\) ( với \(x_1< x_2\) ) sao cho \(\left|x_1\right|>\left|x_2\right|\)
Cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=\left(2m+1\right)x+1-m^2\) (với m là tham số). Tìm m để (d) cắt (P) tại 2 điểm nằm về hai phía của trục tung
BÀI 1 :Cho parabol y=x^2 và đường thẳng d:y= -2x+m
1. Với m = 3, hãy:
a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm M và N của (d) và (P).
c) Tính độ dài đoạn thẳng MN.
2. Tìm các giá trị của m để:
a) (d) và (P) tiếp xúc nhau.
b) (d) cắt (P) tại hai điểm phân biệt.
BÀI 2:
Trong mặt phẳng tọa độ Oxy cho M(1;2) và đường thẳng d: y=-3x+1
1. Viết phương trình đường thẳng (d') đi qua M và song song với (d).
2. Cho parabol P: y=mx^2. Tìm các giá trị của tham số m để (d) và (P) cắt nhau tại hai điểm phân biệt A, B nằm cùng phía đối với trục tung.
BÀI 3:
Cho parabol P: y=x^2 và đường thẳng d:y= 2mx-2m+3
a) Tìm tọa độ các điểm thuộc (P) biết tung độ của chúng bằng 2.
b) Chứng minh với mọi giá trị của tham số m thì đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt.
c) Gọi y1,y2 là tung độ các giao điểm của (d) và (P). Tìm các giá trị của tham số m để y1+y2<9
BÀI 4:
Cho parabol P:y=ã^2 và đường thẳng d:y= 2mx-m+2
1. Xác định tham số a biết (P) đi qua A(1;-1).
2. Biện luận số giao điểm của (P) và (d) theo tham số m.
BÀI 5:
Cho parabol P:y=x^2/2 và đường thẳng d:y= 1/2*x+2
1. Với n = 1, hãy:
a) Vẽ (d) và (P) trên cùng một mặt phẳng tọa độ.
b) Tìm tọa độ các giao điểm A và B của (d) và (P).
c) Tính diện tích tam giác AOB.
2. Tìm các giá trị của n để:
a) (d) và (P) tiếp xúc nhau.
b) (d) cắt (P) tại hai điểm phân biệt.
c) (d) cắt (P) tại hai điểm nằm về hai phía đối của trục Oy.
Bài 1: Viết pt đường thẳng tiếp xúc với(P)y=\(2x^2\) tại điểm(-1;2)
Bài 2)Viết pt đường thẳng song song với đường thẳng y=-x+2 và cắt (P)y=\(x^2\) tại điểm có hoành độ bằng 1
Bài 3)Cho Parabol (P)y=\(x^2\) và đường thẳng (d) y=mx-2(m khác 0, m là tham số)
a)khi m=3 tìm tọa độ giao điểm của (P) và (d)
b) Gọi A\(\left(x_A;y_A\right)\), B\(\left(x_B;y_B\right)\) là hai giao điểm phân biệt của (P) và (d). Tìm các giá trị của m sao cho \(y_A+y_B=2\left(x_A+x_B\right)-1\)
Bài 4) Cho hàm số y=(2m-1)x+m+1 với m là tham số và m khác \(\dfrac{1}{2}\). Hãy xác định m trong từng trường hợp sau
a) ĐTHS đi qua điểm M(-1;1)
b) ĐTHS cắt trục tung, trục hoành lần lượt tại A,B sao cho tam giác OAB cân
Trong mặt phẳng tọa độ Oxy cho parabol \(\left(P\right):y=x^2\) và đường thẳng \(\left(d\right):y=2.\left(m-2\right)x+5\). Tìm điều kiện của m để đường thẳng (d) cắt đường cong (P) tại 2 điểm phân biệt có hoành độ x1, x2 (Giả sử x1<x2) thỏa mãn: \(\left|x_1\right|-\left|x_2+2\right|=10\)
Cho \(\left(P\right):y=\dfrac{1}{2}x^2\) và đường thẳng \(\left(d\right):y=mx+m+5\)
a) Chứng minh rằng với mọi giá trị của tham số m thì
+ Đường thẳng (d) luôn đi qua một điểm cố định, tìm tọa độ điểm đó
+ Đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt
b) Tìm tọa độ hai điểm A và B phụ thuộc (P) sao cho A đối xứng với B quá điểm M(-1;5)
tìm tất cả các giá trị của m sao cho hai đường thẳng y=2x+m+2 và y=(1-m)x+1 cắt tại 1 điểm trên parabol y=2x2