Giúp mình ý 2 phần d với ạ
Cho hình chữ nhật ABCD. Kẻ AH ⊥ BD ( H ∈ BD)
a) CM: ΔHDA đồng dạng ΔADB
b) CM: AD2 = DB. HD
c) Tia phân giác góc ABD cắt AH và AB lần lượt tại M và K. CM: AK.AM=BK.HM
d) Gọi O là giao điểm của AC và BD. Lấy P thuộc AC , dưng hình chữ nhật AEPF ( E thuộc AB, F thuộc AD) BF cắt DE ở Q. CM: EF // DB và A, Q, O thẳng hàng
xét tam giác ABC:
EP//BC (cùng // AD)
=> AP/AC=AE/AB (talet) (1)
xét tam giác ADC:
PF//DC (cùng //AB)
=> AF/AD=AP/AC (talet) (1)
từ (1) (2) => AE/AB=AF/AD
xét tam giác ABD có:
AF/AD=AE/AB (cmt)
=> EF//BD (talet đảo)
xét tam giác QFE và QBD:
EQF=BQD (đối đỉnh)
QBD=EFQ (so le trong)
=> đồng dạng
=> EF/BD=EQ/QD => 2EI/2OD=EQ/QD
chứng minh tam giác EQI đồng dạng DQO vì có 2 góc đối đỉnh và 2 góc so le trong
=> góc EQI=DQO
=> I, Q, O thẳng hàng
mà A là trung điểm của AP (AEPF là hcn)
=> I, A thằng hàng
=> A, Q, O thẳng hàng