Tam giác ABC vuông tại A, AH là đường cao
-->AH.BC=AB.AC (định lý 3) -->AH=\(\dfrac{AB.AC}{BC}\)(1)
Có a.sinB.cosB=BC.\(\dfrac{AC}{BC}.\dfrac{AB}{BC}\)=\(\dfrac{BC.AC.AB}{BC.BC}\)=\(\dfrac{AC.AB}{BC}\)(2)
Từ (1),(2) suy ra AH=a.sinB.cosB
Có AB2=BC.BH (định lý 1) -->BH=\(\dfrac{AB^2}{BC}\)(3)
Có a.sin2B= BC.\(\left(\dfrac{AB}{BC}\right)^2\)=\(\dfrac{BC.AB^2}{BC^2}\)=\(\dfrac{AB^2}{BC}\)(4)
Từ (3),(4) suy ra BH=a.cos2B
Có AC2=BC.CH (định lý 1) -->CH=\(\dfrac{AC^2}{BC}\)(5)
Có a.sin2B= BC.\(\left(\dfrac{AC}{BC}\right)^2\)=\(\dfrac{BC.AC^2}{BC^2}\)=\(\dfrac{AC^2}{BC}\)(6)
Từ (5),(6) suy ra CH=a.sin2B