Đặt \(P=\frac{5-3}{7}+\frac{5^2-3^2}{7^2}+...+\frac{5^n-3^n}{7^n}=\frac{5}{7}+\left(\frac{5}{7}\right)^2+...+\left(\frac{5}{7}\right)^n-\frac{3}{7}-\left(\frac{3}{7}\right)^2-...-\left(\frac{3}{7}\right)^n=A-B\)
\(A=\frac{5}{7}+\left(\frac{5}{7}\right)^2+...+\left(\frac{5}{7}\right)^n\) là tổng CSN với \(u_1=\frac{5}{7};q=\frac{5}{7};n=n\)
\(\Rightarrow A=\frac{5}{7}.\frac{1-\left(\frac{5}{7}\right)^{n+1}}{1-\frac{5}{7}}=\frac{5}{2}-\frac{5}{2}.\left(\frac{5}{7}\right)^{n+1}\)
\(B=\frac{3}{7}+\left(\frac{3}{7}\right)^2+...+\left(\frac{3}{7}\right)^n\) là tổng CSN với \(u_1=\frac{3}{7};q=\frac{3}{7}\)
\(\Rightarrow B=\frac{3}{7}.\frac{1-\left(\frac{3}{7}\right)^{n+1}}{1-\frac{3}{7}}=\frac{3}{4}-\frac{3}{4}.\left(\frac{3}{7}\right)^{n+1}\)
\(\Rightarrow limP=lim\left(\frac{5}{2}-\frac{5}{2}\left(\frac{5}{7}\right)^{n+1}-\frac{3}{4}+\frac{3}{4}\left(\frac{3}{7}\right)^{n+1}\right)=\frac{5}{2}-\frac{3}{4}=\frac{7}{4}\)