1:
\(y'=\dfrac{\left(x-1\right)'\left(x+2\right)-\left(x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{3}{\left(x+2\right)^2}\)
f(-1)=(-1-1)/(-1+2)=-2
f'(-1)=3/(-1+2)^2=3
y-f(-1)=f'(-1)(x+1)
=>y+2=3(x+1)=3x+3
=>y=3x+1
2: y'=2x+3
f(1)=1+3-2=2
f'(1)=2+3=5
y-f(1)=f'(1)(x-1)
=>y-2=5(x-1)=5x-5
=>y=5x-3
4: y=3
=>x^2+2x+4=3
=>x^2+2x+1=0
=>x=-1
y=x^2+2x+4
=>y'=2x+2=f'(x)
f'(-1)=-2+2=0
y-f(-1)=f'(-1)(x+1)
=>y+3=0(x+1)
=>y=-3










