Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Pha

Giải pt

\(x^2-6x+\sqrt{x^2-6x+7}=5\)

Akai Haruma
28 tháng 9 2018 lúc 20:46

Lời giải:
ĐKXĐ:......

Ta có:

\(x^2-6x+\sqrt{x^2-6x+7}=5\)

\(\Leftrightarrow x^2-6x+7+\sqrt{x^2-6x+7}=12\)

Đặt \(\sqrt{x^2-6x+7}=a(a\geq 0)\). Khi đó pt trở thành:

\(a^2+a=12\)

\(\Leftrightarrow a^2+a-12=0\)

\(\Leftrightarrow (a-3)(a+4)=0\Rightarrow a=3\) (do $a\geq 0$)

\(\Rightarrow x^2-6x+7=a^2=9\)

\(\Rightarrow x^2-6x-2=0\)

\(\Rightarrow x=3\pm \sqrt{11}\) (thỏa mãn)

Vậy........

Học tốt
28 tháng 9 2018 lúc 20:58

\(ĐKXĐ:x^2-6x+7\ge0\)

ĐẶt: \(n=\sqrt{x^2-6x+7}\left(n\ge0\right)\)

\(\Leftrightarrow n^2-7=x^2-6x\)

Phương trình thành:

\(n^2-7+n=5\)

\(\Leftrightarrow n^2+n-12=0\)

\(\Leftrightarrow n^2+2\cdot n\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}-12=0\)

\(\Leftrightarrow\left(n+\dfrac{1}{2}\right)^2-\dfrac{49}{4}=0\)

\(\Leftrightarrow\left(n+\dfrac{1}{2}\right)^2=\dfrac{49}{4}\)

\(\Rightarrow\left[{}\begin{matrix}n+\dfrac{1}{2}=\dfrac{7}{2}\\n+\dfrac{1}{2}=-\dfrac{7}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=3\\n=-4\end{matrix}\right.\)(loại n=-4)

Với n=3

\(\Rightarrow\sqrt{x^2-6x+7}=3\)

\(\Leftrightarrow x^2-6x+7=9\)

\(\Leftrightarrow x^2-6x-2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot3+9-9-2=0\)

\(\Leftrightarrow\left(x-3\right)^2=11\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{11}+3\\x=-\sqrt{11}+3\end{matrix}\right.\)


Các câu hỏi tương tự
Nguyễn Ngọc Ni
Xem chi tiết
Phương Thảo
Xem chi tiết
Thái Huỳnh
Xem chi tiết
Trịnh Minh Tuấn
Xem chi tiết
Phạm Hồ Bảo
Xem chi tiết
Cold Wind
Xem chi tiết
Nguyễn Huế Anh
Xem chi tiết
Limited Edition
Xem chi tiết
Anna Trần
Xem chi tiết