Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Ni

giải pt sau

\(\sqrt{x^2+2x+5}=-x^2-2x+1\)

\(\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Nào Ai Biết
12 tháng 7 2018 lúc 17:43

\(\sqrt{x^2+2x+5}=-x^2-2x+1\)

\(\Leftrightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

Ta thấy :

\(-\left(x+1\right)^2+2\le2\) Với \(\forall x\in R\)

\(\sqrt{\left(x+1\right)^2+4}\ge2\) Với \(\forall x\in R\)

\(\Rightarrow\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\) Khi x + 1 = 0 \(\Leftrightarrow\) x = -1

Vậy Phương trình có nghiệm x = -1 .

Nào Ai Biết
12 tháng 7 2018 lúc 17:52

\(\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta thấy :

\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\) \(\ge1\) Với \(\forall x\in R\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\ge3\) Với \(\forall x\in R\)

\(-x^2+6x-5=-\left(x-3\right)^2+4\le4\) Với \(\forall x\in R\)

\(\Rightarrow VT\ge4\) ; \(VP\le4\)

\(\Rightarrow VT=VP=4\)

Dấu "=" xảy ra khi x - 3 = 0 \(\Leftrightarrow\) x = 3

Vậy phương trình có nghiệm x = 3 .

Phùng Khánh Linh
12 tháng 7 2018 lúc 17:53

\(a.\sqrt{x^2+2x+5}=-x^2-2x+1\)

Ta có : \(VT=\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\)\(2\)

\(VP=-x^2-2x+1=-\left(x^2+2x+1\right)+2=-\left(x+1\right)^2+2\)\(2\)

Để : \(\sqrt{\left(x+1\right)^2+4}=-\left(x+1\right)^2+2\)

\(x=-1\)

KL...........

\(b.\sqrt{x^2-6x+10}+\sqrt{4x^2-24x+45}=-x^2+6x-5\)

Ta có : \(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\text{≥}1\left(1\right)\)

\(\sqrt{4x^2-24x+45}=\sqrt{4\left(x-3\right)^2+9}\text{≥}3\left(2\right)\)

\(-x^2+6x-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\text{≥}4\left(3\right)\)

Từ ( 1 ; 2 ) , ta có :
\(\sqrt{\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\text{≥}4\left(4\right)\)

Từ ( 3 ; 4 ) để : \(\sqrt{\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}=-\left(x-3\right)^2+4\)

\(x=3\)

KL..........


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
Genevieve Hà
Xem chi tiết
cấn thị mai anh
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Đinh Thuận
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Ex Crush
Xem chi tiết
Lê Chính
Xem chi tiết