Giải Pt
a. sin3x = sin \(\left(90^0-x\right)\)
b. cos(3x+ \(45^0\)) = -cosx
c. sin ( 2x+\(\frac{\pi}{3}\)) + sinx = 0
d. sin \(\left(x-\frac{2\pi}{3}\right)\)- cos2x=0
e. cos ( 2x - \(\frac{\pi}{4}\)) - sin ( 2x+\(\frac{\pi}{3}\)) =0
Câu 1: Giải các phương trình sau:
a, \(\left(sin\frac{x}{2}+cos\frac{x}{2}\right)^2\)+\(\sqrt{3}cosx=2\)
b, \(\frac{\left(1-2sinx\right).cosx}{\left(1+2sinx\right)\left(1-sinx\right)}=\sqrt{3}\)
c, 5sinx-2=3(1-sinx).tan2x
d, \(\frac{2\left(sin^6x+cos^6\right)}{\sqrt{2}-2sinx}=0\)
e, cos23x.cos2x-cos2x=0
Câu 2: giải các phương trình sau:
a, sinx+cosx.sin2x+\(\sqrt{3}cos3x=2\left(cos4x+sin^3x\right)\)
b, \(\frac{\left(2-\sqrt{3}\right).cosx-2sin2\left(\frac{x}{2}-\frac{\pi}{4}\right)}{2cosx-1}\)
c, 8sin22x.cos2x=\(\sqrt{3}sin2x+cos2x\)
d, sin3x- \(\sqrt{3}cos^3x=sinxcos^2x-\sqrt{3}sin^2xcosx\)
Giải các phương trình lượng giác sau:
1) a/ \(cos\left(10x+12\right)+4\sqrt{2}sin\left(5x+6\right)-4=0\)
b/ \(cos\left(4x+2\right)+3sin\left(2x+1\right)=2\)
2) a/ \(cos2x+sin^2x+2cosx+1=0\)
b/ \(4sin^22x-8cos^2x+ 3=0\)
c/ \(4cos2x+4sin^2x+4sinx=1\)
3) a/ \(tanx+cotx=2\)
b/ \(2tanx-2cotx=3\)
4) a/ \(2sin2x+8tanx=9\sqrt{3}\)
b/ \(2cos2x+tan^2x=5\)
5) a/ \(\left(3+cotx\right)^2=5\left(3+cotx\right)\)
b/ \(4\left(sin^2x+\dfrac{1}{sin^2x}\right)-4\left(sinx+\dfrac{1}{sinx}\right)=7\)
Giải pt sau:
A. (Sinx+1)(sinx-√2)=0
B.2sinxcosx=1
C. 4sinxcosxcos2x+1=0
D. Sin4x-cos4x=0
E. (Sinx+1)(2cos2x-√2)
F. Sin2x=cos4x/2-sin4x/2
Giải các phương trình sau
1) sin3x = 0
2) cos25x = 0
3) tan (x - 15o) = 3tan (x + 15o)
4) cos x + cos 2x + cos 3x = 0
5) sin 2x + sin 4x + sin 6x = 0
6) tan x + tan 2x + tan x.tan 2x = 1
7) tan x + tan 2x + tan 3x = tan x.tan 2x.tan 3x
8) cot2x + \(\frac{\text{3}}{\text{sin x}}\) + 3 = 0
Giải các phương trình sau :
a) \(3sin^2x-4sinxcosx+5cos^2x=2\)
b) \(25sin^2x+15sin2x+9cos^2=25\)
c) sinx + cosx =1
d) 3cos2x - 4sin2x =1
f) \(4sin^2x-6cos^2x=0\)
g) \(5sin2x-6cos^2x=13\)
h) \(sinx=\sqrt{3}cosx\)
i) \(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\frac{1}{4}\)
j)\(tanx+2cotx-3=0\)
k) \(tan^25x=\frac{1}{3}\)
m) \(sin^4x-cos^4x=cosx-2\)
cos2x-√3 sin2x=sin3x+1
3sin2x+4cos2x+5cos2003x=0
√3sin(x-\(\frac{\pi}{3}\))\(+sin\left(x+\frac{\pi}{6}\right)-2sin1972x=0\)
\(\sqrt{2}cos\left(\frac{x}{5}-\frac{\pi}{12}\right)-\sqrt{6}sin\left(\frac{x}{5}-\frac{\pi}{12}\right)=2sin\left(\frac{x}{5}+\frac{2\pi}{3}\right)-2sin\left(\frac{3x}{5}+\frac{\pi}{6}\right)\)
Giải các phương trình sau:
a, cos2x+cos2x+sinx+2 =0
b, 5tanx-2cotx-3=0
c, \(\frac{3}{cos^2x}-4tanx-2=0\)
d, 2tan\(\frac{x}{3}\)-\(\frac{1}{tan\frac{x}{3}}\)+3=0
e, sin4x+cos4x=sìnxcos2x
f, sin6x+cos6x=\(\frac{5}{6}\)(sin4x+cos4x)
giải các pt
a) \(5\left(1+cosx\right)=2+sin^4x-cos^4x\)
b) \(\sqrt{3}tanx+cotx-\sqrt{3}-1=0\)
c) \(6sin^2x+2sin^22x=5\)
d) \(cos^22x+cos^2\left(x-\frac{\pi}{4}\right)-1=0\)
e) \(\left(1+tan^2x\right)\left(9-13cosx\right)+4=0\)