`2/(4-x^2)+1/(x^2-2x)=(x-4)/(x^2+2x)(x ne 0,+-2)`
`<=>(2x)/(4x-x^3)+(x+2)/(x^3-4x)=(x^2-6x+8)/(x^3-4x)`
`<=>-2x+x+2=x^2-6x+8`
`<=>x^2-7x+10=0`
`<=>x^2-2x-5x+10=0`
`<=>x(x-2)-5(x-2)=0`
`<=>(x-2)(x-5)=0`
Vì `x ne 2=>x-2 ne 0`
`=>x-5=0`
`=>x=5`
Vậy `S={5}`
b) ĐKXĐ: \(x\ne1\)
Ta có: \(\dfrac{2}{x-1}-\dfrac{3x^2}{x^3-1}=\dfrac{x}{x^2+x+1}\)
\(\Leftrightarrow\dfrac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
Suy ra: \(2x^2+2x+1-3x^2-x^2+x=0\)
\(\Leftrightarrow-2x^2+x+1=0\)
\(\Leftrightarrow-2x^2+2x-x+1=0\)
\(\Leftrightarrow-2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\-2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(loại\right)\\x=-\dfrac{1}{2}\left(nhận\right)\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)