Ta có: \(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\Leftrightarrow\left(\dfrac{x^2-10x-27}{1973}-1\right)+\left(\dfrac{x^2-10x-29}{1971}-1\right)=\left(\dfrac{x^2-10x-1971}{29}-1\right)+\left(\dfrac{x^2-10x-1973}{27}-1\right)\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1973}+\dfrac{x^2-10x-2000}{1971}=\dfrac{x^2-10x-2000}{29}+\dfrac{x^2-10x-2000}{27}\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1973}+\dfrac{1}{1971}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)
\(\Leftrightarrow\left(x^2-10x-2000\right)=0\) vì \(\left(\dfrac{1}{1973}+\dfrac{1}{1971}-\dfrac{1}{29}-\dfrac{1}{27}\right)\ne0\)
\(\Leftrightarrow x^2-50x+40x-2000=0\)
\(\Leftrightarrow x\left(x-50\right)+40\left(x-50\right)=0\)
\(\Leftrightarrow\left(x-50\right)\left(x+40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-50=0\\x+40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=50\\x=-40\end{matrix}\right.\)
Vậy: Giá trị x thỏa mãn là: \(x=-40;50\)
\(\Leftrightarrow\dfrac{x^2-10x-29}{1971}-1+\dfrac{x^2-10x-27}{1973}-1=\dfrac{x^2-10x-1971}{29}-1+\dfrac{x^2-10x-1973}{27}-1\)
\(\Leftrightarrow\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}=\dfrac{x^2-10x-2000}{29}+\dfrac{x^2-10x-2000}{27}\)
\(\Leftrightarrow\left(x^2-10x-2000\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\right)=0\)
vì \(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\)
Nên \(x^2-10x-2000=0\)
<=> \(x^2-50x+40x-2000=0\)
<=> \(x\left(x-50\right)+40\left(x-50\right)=0\)
<=> \(\left(x-50\right)\left(x+40\right)=0\)
<=> \(x=50\) hoặc \(x=-40\)
Vậy tập nghiệm của phương trình là \(S=\left\{50;-40\right\}\)
\(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
\(\left(\dfrac{x^2-10x-29}{1971}-1\right)+\left(\dfrac{x^2-10x-27}{1973}-1\right)=\left(\dfrac{x^2-10x-1971}{29}-1\right)+\left(\dfrac{x^2-10x-1973}{27}-1\right)\)
\(\dfrac{x^2-10x-2000}{1971}+\dfrac{x^2-10x-2000}{1973}-\dfrac{x^2-10x-2000}{29}-\dfrac{x^2-10x-2000}{27}=0\)
\(\left(x^2+10x-20x-200\right)\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{27}-\dfrac{1}{29}\right)=0\)
\(\left(x-20\right)\left(x+10\right)=0\left(\dfrac{1}{1971}+\dfrac{1}{1973}-\dfrac{1}{29}-\dfrac{1}{27}\ne0\right)\)
\(\Rightarrow\left[{}\begin{matrix}x=20\\x=-10\end{matrix}\right.\)