\(PT< =>\frac{\left(x-5\right)\left(x-3\right)+2\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}=1\)
<=> \(\frac{x^2-8x+15+2x-2}{\left(x-1\right)\left(x-3\right)}=1\)
<=> \(x^2-6x+13=x^2-4x+3\)
<=> \(x^2-6x+13-x^2+4x-3=0\)
<=> \(-2x+10=0\)
<=> x = 5 (TMDK)
ĐKXĐ: x∉{1;3}
Ta có: \(\frac{x-5}{x-1}+\frac{2}{x-3}=1\)
\(\Leftrightarrow\frac{\left(x-5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}+\frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=\frac{\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}\)
Suy ra: \(x^2-8x+15+2x-2=x^2-4x+3\)
⇔\(x^2-6x+13-x^2+4x-3=0\)
\(\Leftrightarrow-2x+10=0\)
⇔\(-2x=-10\)
hay x=5(tm)
Vậy: x=5