Ta có:
\(x^2+2x=x\left(x+2\right)\)
\(x^2+6x+8=x^2+2x+4x+8=x\left(x+2\right)+4\left(x+2\right)=\left(x+2\right)\left(x+4\right)\)
\(x^2+10x+24=x^2+4x+6x+24=x\left(x+4\right)+6\left(x+4\right)=\left(x+4\right)\left(x+6\right)\)
\(x^2+14x+48=x^2+6x+8x+48=x\left(x+6\right)+8\left(x+6\right)=\left(x+6\right)\left(x+8\right)\)
Phương trình trở thành:
\(\dfrac{1}{x\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+6\right)}+\dfrac{1}{\left(x+6\right)\left(x+8\right)}=3\)
\(\Leftrightarrow2\left(\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+...+\dfrac{1}{x+6}-\dfrac{1}{x+8}\right)=3\)
\(\Leftrightarrow2\left(\dfrac{1}{x}-\dfrac{1}{x+8}\right)=3\Leftrightarrow\dfrac{8}{x\left(x+8\right)}=\dfrac{3}{2}\Leftrightarrow3x\left(x+8\right)=16\Leftrightarrow x^2+8x=\dfrac{16}{3}\Leftrightarrow x=0,6188021535\)