1) \(\dfrac{x^2-4}{x^2+2x+1}:\dfrac{4-2x}{2x+2}=\dfrac{\left(x-2\right)\left(x+2\right)2\left(x+1\right)}{\left(x+1\right)^22\left(2-x\right)}=\dfrac{2\left(x-2\right)\left(x+2\right)\left(x+1\right)}{-2\left(x-2\right)\left(x+1\right)\left(x+1\right)}=\dfrac{-\left(x+2\right)}{x+1}=\dfrac{-x-2}{x+1}\)
2) \(\dfrac{x+1}{x+2}:\left(\dfrac{x+2}{x+3}:\dfrac{x+3}{x+1}\right)=\dfrac{x+1}{x+2}:\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x+3\right)\left(x+3\right)}=\dfrac{\left(x+1\right)\left(x+3\right)\left(x+3\right)}{\left(x+2\right)\left(x+2\right)\left(x+1\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}=\dfrac{x^2+6x+9}{x^2+4x+4}\)