Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Big City Boy

Giải phương trình sau: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)

Yeutoanhoc
25 tháng 2 2021 lúc 21:22

`1+(x-2)/(1-x)+(2x^2-5)/(x^3-1)=4/(x^2+x+1)(x ne 1)`

`<=>(x^3-1)/(x^3-1)-((x-2)(x^2+x+1))/(x^3-1)+(2x^2-5)/(x^3-1)=(4(x-1))/(x^3-1)`

`<=>x^3-1-(x-2)(x^2+x+1)+2x^2-5=4(x-1)`

`<=>x^3-1-(x^3-x^2-x-2)+2x^2-5=4x-4`

`<=>x^3-1-x^3+x^2+x+2+2x^2-5-4x+4=0`

`<=>3x^2-3x+2=0`

`<=>x^2-2/3 x+2/3=0`

`<=>x^2-2.x. 1/3+1/9+5/9=0`

`<=>(x-1/3)^2=-5/9` vô lý

Vậy phương trình vô nghiệm.

Nguyễn Lê Phước Thịnh
25 tháng 2 2021 lúc 22:26

ĐKXĐ: \(x\ne1\)

Ta có: \(1+\dfrac{x-2}{1-x}+\dfrac{2x^2-5}{x^3-1}=\dfrac{4}{x^2+x+1}\)

\(\Leftrightarrow\dfrac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

Suy ra: \(x^3-1-\left(x^3+x^2+x-2x^2-2x-2\right)+2x^2-5=4x-4\)

\(\Leftrightarrow x^3-1-x^3+x^2+x+2+2x^2-5-4x+4=0\)

\(\Leftrightarrow3x^2-3x=0\)

\(\Leftrightarrow3x\left(x-1\right)=0\)

mà 3>0

nên x(x-1)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=1\left(loại\right)\end{matrix}\right.\)

Vậy: S={0}


Các câu hỏi tương tự
Thỏ Nghịch Ngợm
Xem chi tiết
Dưa Trong Cúc
Xem chi tiết
Thuy Tran
Xem chi tiết
:vvv
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
Ctuu
Xem chi tiết
Gallavich
Xem chi tiết
Lê Thị Huyền Trang
Xem chi tiết
le thi yen chi
Xem chi tiết