a)Ta có: \(\frac{4x-17}{2x^2+5}=0\)
\(\Leftrightarrow4x-17=0\)
\(\Leftrightarrow4x=17\)
\(\Leftrightarrow x=\frac{17}{4}\)
Vậy: \(x=\frac{17}{4}\)
b) ĐKXĐ: x≠-2
Ta có: \(\frac{\left(x^2-2x\right)-\left(3x+6\right)}{x+2}=0\)
\(\Leftrightarrow x^2-2x-3x-6=0\)
\(\Leftrightarrow x^2-5x-6=0\)
\(\Leftrightarrow x^2+x-6x-6=0\)
\(\Leftrightarrow x\left(x+1\right)-6\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=6\end{matrix}\right.\)(tm)
Vậy: x∈{-1;6}
c) ĐKXĐ: x≠3
Ta có: \(\frac{x^2-x-6}{x-3}=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-2\end{matrix}\right.\)
Vậy: x=-2
d) ĐKXĐ: x≠-5
Ta có: \(\frac{2x-5}{x+5}=3\)
⇔\(\frac{2x-5}{x+5}-3=0\)
⇔\(\frac{2x-5}{x+5}-\frac{3\left(x+5\right)}{x+5}=0\)
\(\Leftrightarrow2x-5-3\left(x+5\right)=0\)
\(\Leftrightarrow2x-5-3x-15=0\)
\(\Leftrightarrow-x-20=0\)
\(\Leftrightarrow-\left(x+20\right)=0\)
\(\Leftrightarrow x=-20\)(tm)
Vậy: x=-20