ĐKXĐ: \(x\ne2009\) ; \(x\ne2010\)
Đặt : a = \(2009-x\)
b = \(x-2010\)
⇒ a + b = -1 ⇒ a = - ( 1 + b )
⇒ Phương trình đã cho có dạng :
\(\dfrac{a^2+ab+b^2}{a^2-ab+b^2}=\dfrac{19}{49}\)
⇔ \(\dfrac{\left(1+b\right)^2-b\left(1+b\right)+b^2}{\left(1+b\right)^2+b\left(1+b\right)+b^2}\) \(=\dfrac{19}{49}\)
⇔ \(\dfrac{b^2+b+1}{3b^2+3b+1}\) \(=\dfrac{19}{49}\)
⇔ \(49b^2+49b+49=57b^2+57b+19\)
⇔ \(8b^2+8b-30=0\)
⇔ \(4b^2+4b-15=0\)
⇔ \(4b^2-6b+10b-15=0\)
⇔ \(2b\left(2b-3\right)+5\left(2b-3\right)=0\)
⇔ \(\left(2b-3\right)\left(2b+5\right)=0\)
⇔ \(\left[{}\begin{matrix}2b+5=0\\2b-3=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}b=\dfrac{-5}{2}\\b=\dfrac{3}{2}\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\dfrac{-5}{2}+2010=2007,5\\x=\dfrac{3}{2}+2010=2011,5\end{matrix}\right.\)
Vậy ......