\(pt\left(2\right)\Leftrightarrow x^2+\left(1-x\right)^2-13=0\)
\(\Rightarrow x^2+1-2x+x^2-13=0\)
\(\Rightarrow2x^2-2x-12=0\)
\(\Rightarrow x^2-x-6=0\)
\(\Delta=1^2-4.1.\left(-6\right)=1+24=25>0\)
\(\Delta>0\) thì pt có 2 nghiệm phân biệt: \(\left\{{}\begin{matrix}x_1=\dfrac{1-5}{2}=-2\\x_2=\dfrac{1+5}{2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y_1=3\\y_2=-2\end{matrix}\right.\)
Vậy \(\left(x;y\right)\rightarrow\left(3;-2\right);\left(-2;3\right)\)
\(\left\{{}\begin{matrix}x+y=1\\x^2+y^2=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\\left(x+y\right)^2-2xy=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\1-2xy=13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\\\left(1-y\right)y=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1-y\left(1\right)\\y-y^2+6=0\left(2\right)\end{matrix}\right.\)
Giải phương trình (2) ta được y = 3 và y = -2.
Thay vào (1) ta được lần lượt x = -2 và x = 3