Giải hệ PT: \(\left\{{}\begin{matrix}x^2+y^2+xy=1\\x^3+y^3=x+3y\end{matrix}\right.\)
Giải hệ phương trình đối xứng loại 1
1 , \(\left\{{}\begin{matrix}x^3+xy+y^3=3\\2x+xy+2y=-3\end{matrix}\right.\)
2 , \(\left\{{}\begin{matrix}x+y+2xy=2\\x^3+y^3=8\end{matrix}\right.\)
3 , \(\left\{{}\begin{matrix}x^3-y^3=7\\xy\left(x-y\right)=2\end{matrix}\right.\)
4 \(\left\{{}\begin{matrix}x+y+2xy=5\\x^2+y^2+xy=7\end{matrix}\right.\)
giúp mình với mình đang cần gấp
Giải hệ PT: \(\left\{{}\begin{matrix}x^2-y^2=1-xy\\x^2+y^2=3xy+11\end{matrix}\right.\)
giải hệ PT \(\left\{{}\begin{matrix}x+y=4\\\left(x^3+y^3\right)\left(x^2+y^2\right)=280\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x^3+y^3-xy^2=1\\4x^4+y^4=4x+y\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x^2y^2=2x^2+y\\xy^2+2x^2=1\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}4xy+4\left(x^2+y^2\right)+\dfrac{3}{\left(x+y\right)^2}=\dfrac{85}{3}\\2x+\dfrac{1}{x+y}=\dfrac{13}{3}\end{matrix}\right.\)
giải hệ đối xứng loại I
17) \(\left\{{}\begin{matrix}x^3+y^3+x^3y^3=17\\x+y+xy=5\end{matrix}\right.\)
18) \(\left\{{}\begin{matrix}x^3+y^3=2\\xy\left(x+y\right)=2\end{matrix}\right.\)
19) \(\left\{{}\begin{matrix}x^4+y^4+x^2y^2=481\\x^2+y^2+xy=37\end{matrix}\right.\)
giúp mình với ạ , câu nào cũng được ạ !!
giải hệ
\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^3-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)