ĐK: x,y khác -1
Xét pt thứ nhất của hệ:
\(\Leftrightarrow x\left(x+1\right)+y\left(y+1\right)=\left(x+1\right)\left(y+1\right)\) (1)
Do x,y khác -1 nên (x+1)(y+1) khác 0. Chia hai vế cho (x+1)(y+1), pt (1)
\(\Leftrightarrow\frac{x}{y+1}+\frac{y}{x+1}=1\). Đặt \(\frac{x}{y+1}=a;\frac{y}{x+1}=b\)
Hệ phương trình tương đương với \(\left\{{}\begin{matrix}a+b=1\\a^2+b^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2+2ab=1\\a^2+b^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=1\\ab=0\end{matrix}\right.\). Theo hệ thức Viet, a, b là hai nghiệm của pt:
\(t^2-t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\).
Với a = 0; b = 1 thì \(\left\{{}\begin{matrix}\frac{x}{y+1}=0\\\frac{y}{x+1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Với a = 1; b = 0 thì \(\left\{{}\begin{matrix}\frac{x}{y+1}=1\\\frac{y}{x+1}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
Vậy (x;y) = (1;0) và các hoán vị của nó.
P/s: Em ko chắc