Cho a,b,c thuộc[0;1]:
CMR : a+b^2+c^3-ab-bc-ac<hoặc =1
Cho a,b,c là các số thực dương.
CMR \(\left(1+a^3\right)\left(1+b^3\right)\left(1+c^3\right)\ge\left(1+ab^2\right)\left(1+bc^2\right)\left(1+ca^2\right)\)
Biết: ab + bc + ca = 3abc.
Cmr: \(\dfrac{a}{a^2+bc}+\dfrac{b}{b^2+ca}+\dfrac{c}{c^2+ab}\le\dfrac{3}{2}\)
Cho tam giác ABC vuông tại A đường cao AH H thuộc BC biết ah = 6 cm BH = 4 cm . a,Tính độ dài của đoạn thẳng CH, AB, AC, BC.
B , giải tam giác abc vuông tại a biết góc B = 77 độ AB = 13 cm ( kết quả Lấy chính xác đến 3 chữ số thập phân )
Cho a, b, c là các số dương thỏa mãn điều kiện:
a+b+c+ab+bc+ca = 6
Chứng minh rằng:
\(\dfrac{a^3}{b}\)+\(\dfrac{b^3}{c}\)+\(\dfrac{c^3}{a}\)\(\ge\)\(a^2\)+\(b^2\)+\(c^2\)\(\ge\) 3
Cho a,b,c là các số thực thỏa mãn \(a^2+b^2+c^2\ne0\)
CMR \(\sum\limits^{ }_{cyc}\dfrac{a^2-bc}{2a^2+b^2+c^2}\ge0\)
Đề 3
Câu 1
a) Tính \(2\sqrt{9}+3\sqrt{16}\)
b) Giải phương trình 3x-15=0
c) Giải bất phương trình: \(x^2+\left(x-1\right)\left(3-x\right)>0\)
Câu 2
Cho pt: \(x^2+4\left(m-1\right)x-m^2-8=0\left(1\right)\)
a) Giải pt (1) khi m=2
b) Gọi \(x_1:x_2\)là 2 nghiệm của phương trình (1).Tìm giá trị lớn nhất của biểu thức \(Q=x_1+x_2+x_1\times x_2\)
Câu 3 Cho tam giác ABC vuông cân tại A, điểm M bất kỳ thuộc cạnh AC (M không trùng A;C) Đường thẳng qua C vuông góc với đường thẳng BM tại H, CH cắt tia BA tại I. Gọi K là giao điểm của IM và BC. CM
a) Tứ giác BKHI nội tiếp đường tròn
b) Chứng minh 2 đoạn thẳng BM và CI = nhau
c) CMR khi M chuyển động trên đoạn AC( M không trùng A và C) thì điểm H luôn chạy trên 1 cung tròn cố định
Cho đường tròn tâm O, bán kính R và một dây cung BC cố định (BC không đi qua O). A là một điểm di động trên cung lớn BC sao cho tam giác ABC nhọn. Các đường cao AD, BE và CF của tam giác ABC đồng quy tại H. Các đường thẳng BE và CF cắt đường tròn tâm O tại điểm thứ hai lần lượt là Q và P.
a) CMR: bốn điểm B, F, E, C cùng thuộc một đường tròn.
b) CMR: các đường PQ, EF song song với nhau.
c) Gọi I là trung điểm của BC. CMR: góc FDE bằng hai lần góc ABE và góc FDE góc FIE.
d) Xác định vị trí của điểm A trên cung lớn BC để chu vi tam giác DEF có giá trị lớn nhất.
giúp e với Y.Y
câu 5:cho tam giác ABC cân tại C nội tiếp đường tròn (O)đường kính CK,điểm M bất kỳ thuộc cung nhỏ BC (M khác B và C).đường thẳng đi qua B và vuông góc với CM, cắt AM tại D. chứng minh rằng :
a) tam giác MBD cân
b)khi M di chuyển trên cung nhỏ BC thì D chuyển động trên một cung tròn cố định và MA+MB<CA+CB
lm hộ mk nhé mk đang cần gấp chụp hình bài lm hoặc trả lời hộ mk nhé!!thanks ai lm hộ mk