Cho tam giác ABC vuông tại A , đường cao AH
1. Biết AB = 18 cm , AC =24 cm .
a, Tính BC , BH , AH .
b, Tính các góc của tam giác ABC.
2. Kẻ HE vuông góc với AB , HF vuông góc với AC .
Chứng minh AE.EB+À.FC = AH 2
Độ dài các cạnh của một tam giác ABC vuông tại A, thỏa mãn các hệ thức sau :
\(BC=AB+2a\)
\(AC=\dfrac{1}{2}\left(BC+AB\right)\)
a là một độ dài cho trước
a) Tính theo a, độ dài các cạnh và chiều cao AH của tam giác
b) Tam giác ABC nội tiếp được trong nửa hình tròn tâm O. Tính diện tích của phần thuộc nửa đường tròn nhưng ở ngoài tam giác ssos
c) Cho tam giác ABC quay một vòng quanh cạnh huyền BC. Tính tỉ số diện tích giữa các phần do các dây cung AB và AC tạo ra
cho tam giác ABC vuong tại A , đường cao AH , có AC =40 , AH = 24 . TÍNH BC , BH , CH , AB
Cho tam giác ABC có AB=3cm,BC=5cm,AC=4cm
a)Chứng minh tam giác ABC vuông tại A
b)Tính độ dài đường cao AH
c)Từ H lần lượt dựng các đường thẳng song song với AB và AC.CÁC đường thẳng này cắt AB tại E và cắt AC tại F.Chứng minh tam giác BEH và HFC đồng dạng.Từ đó suy ra BE.HC=HB.HF
Cho tam giác ABC có A = 120 độ , B=30 độ , đường cao AH=5cm . Tính các cạnh và các góc của tam giác ABC .
Cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn (O) sao cho OA = 2R. Từ A vẽ tiếp tuyến AB của đường tròn (O) (B là tiếp điểm)
a) CM: Tam giác ABO vuông tại B và tính độ dài AB theo R
b) Từ B vẽ dây cung BC của (O) vuông góc với cạnh OA tại H. CM: AC là Tiếp tuyến của đường tròn (O)
c) CM: Tam giác ABC đều
d) Từ H vẽ đường thẳng vuông góc với AB tại D. Đường tròn đường kính AC cắt cạnh DC tại E. Gọi F là trung điểm của cạnh OB. CM: Ba điểm A, E, F thẳng hàng
Cho tam giác ABC vuông tại A, kẻ đường cao AH và đường phân giác BE ( H ∈ BC, E ∈ AC). Kẻ AD vuông góc với BE ( D ∈ BE).
a. Chứng minh tứ giác ADHB nội tiếp được trong một đường tròn, xác định tâm O của đường tròn này.
b. Chứng minh tứ giác ODCB là hình thang.
c. Cho biết góc ABC có số đo bằng 600, AB có độ dài bằng a. Tính theo a diện tích hình phẳng giới hạn bởi các đoạn thẳng AC, BC và cung nhỏ AH của (O).
Cho tam giác ABC vuông tại A, kẻ đường cao AH và đường phân giác BE ( H ϵ BC, E ϵ AC). Kẻ AD vuông góc với BE ( D ϵ BE).
a. Chứng minh rằng tứ giác ADHB nội tiếp được trong một đường tròn, xác định tâm O của đường tròn này.
b. Chứng minh tứ giác ODCB là hình thang.
c. Cho biết góc ABC có số đo bằng 600, AB có độ dài bằng a. Tính theo a diện tích hình phẳng giới hạn bởi các đoạn thẳng AC, BC và cung nhỏ AH của (O).
Cho tam giác ABC có 3 góc nhọn. Dựng đường tròn tâm O đường kính BC cắt AB tại M và AC tại N. Gọi K là giao điểm CM và BN
a)Cm tứ giác AMKN nọi tiếp được
b)Cm \(AK\perp BC\)
C) Cm\(\widehat{OMC}\)=\(\widehat{BAK}\). Từ đó suy ra OM là tiếp tuyến của đường tròn ngoại tiếp tứ giác AMKN
d) Cho\(\widehat{ABC}\)= 60 ĐỘ. VÀ bc = 12 cm. Tính thể tích hình được tạo thành ki quay tam giác BMC quanh MC cố định ( làm tròn 2 chữ số thập phân )