Bài 5: Giải bài toán bằng cách lập hệ phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen thi khanh nguyen

Giải các hệ phương trình sau bằng cách đặt ẩn số phụ:

1) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\)

2) \(\left\{{}\begin{matrix}\dfrac{2}{x+2y}+\dfrac{1}{y+2x}=3\\\dfrac{4}{x+2y}-\dfrac{3}{y+2x}=1\end{matrix}\right.\)

3) \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\)

4) \(\left\{{}\begin{matrix}x^2+y^2=13\\3x^2-2y^2=-6\end{matrix}\right.\)

5) \(\left\{{}\begin{matrix}3\sqrt{x}+2\sqrt{y}=16\\2\sqrt{x}-3\sqrt{y}=-11\end{matrix}\right.\)

6) \(\left\{{}\begin{matrix}|x|+4|y|=18\\3|x|+|y|=10\end{matrix}\right.\)

GIẢI GIÚP MÌNH VỚI M.N

Cold Wind
17 tháng 1 2018 lúc 20:44

hỏi trước tí, bạn biết giải cái hệ này chứ?

\(\left\{{}\begin{matrix}2x+y=3\\2x-3y=1\end{matrix}\right.\)

Cold Wind
17 tháng 1 2018 lúc 21:10

ba cái đồ êu!!

câu số 6 (con số của quỷ sa tăng :v)

đặt \(\left\{{}\begin{matrix}a=\left|x\right|\\b=\left|y\right|\end{matrix}\right.\) (a,b >/ 0)

hpt trở thành : \(\left\{{}\begin{matrix}a+4b=18\\3a+b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x\right|=2\\\left|y\right|=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\\\left[{}\begin{matrix}y=4\\y=-4\end{matrix}\right.\end{matrix}\right.\)

Vậy hpt có các ng (x;y) là: (có 4 nghiệm tự kết luận)

Huyền
17 tháng 1 2018 lúc 21:40

1, \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{8}{x}+\dfrac{15}{y}=1\end{matrix}\right.\) (I) (ĐKXĐ: x, y \(\ne\)0)

Đặt \(\dfrac{1}{x}=a\) ; \(\dfrac{1}{y}=b\)

Hệ pt (I) trở thành :

\(\left\{{}\begin{matrix}a+b=\dfrac{1}{12}\\8a+15b=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}8a+8b=\dfrac{2}{3}\\8a+15b=1\end{matrix}\right.\) \(\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}-7b=\dfrac{-1}{3}\\a+b=\dfrac{1}{12}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=\dfrac{1}{21}\\a+\dfrac{1}{21}=\dfrac{1}{12}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=\dfrac{1}{21}\left(tm\right)\\a=\dfrac{1}{28}\left(tm\right)\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{28}\\\dfrac{1}{y}=\dfrac{1}{21}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=28\left(tm\right)\\y=21\left(tm\right)\end{matrix}\right.\)

Cold Wind
17 tháng 1 2018 lúc 21:41

sorry, bận 1 chút, kết quả câu 2 là hpt có 1 nghiệm (x;y) là (1/3 ; 1/3)

Huyền
17 tháng 1 2018 lúc 22:19

2, \(\left\{{}\begin{matrix}\dfrac{2}{x+2y}+\dfrac{1}{y+2x}=3\\\dfrac{4}{x+2y}-\dfrac{3}{y+2x}=1\end{matrix}\right.\) (I)

(ĐKXĐ: x+2y \(\ne\)0 ; 2x+y\(\ne\)0)

Đặt \(\dfrac{1}{x+2y}=a\) ; \(\dfrac{1}{y+2x}=b\)

Hệ (I) trở thành:

\(\left\{{}\begin{matrix}2a+b=3\\4a-3b=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}4a+2b=6\\4a-3b=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}5b=5\\2a+b=3\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=1\\2a+1=3\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=1\left(tm\right)\\a=1\left(tm\right)\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{1}{x+2y}=1\\\dfrac{1}{y+2x}=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+2y=1\\y+2x=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x+2y=1\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x+4y=2\\2x+y=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3y=1\\x+2y=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x+2.\dfrac{1}{3}=1\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\left(tm\right)\\y=\dfrac{1}{3}\left(tm\right)\end{matrix}\right.\)

- Thay x = \(\dfrac{1}{3}\) ; y = \(\dfrac{1}{3}\) vào x+2y \(\ne\)0 có:

\(\dfrac{1}{3}+2.\dfrac{1}{3}\ne0\) \(\Leftrightarrow\) \(1\ne0\) (luôn đúng)

- Thay x = \(\dfrac{1}{3}\) ; y = \(\dfrac{1}{3}\) vào y+2x\(\ne\)0 có:

\(\dfrac{1}{3}\) +2.\(\dfrac{1}{3}\)\(\ne\) 0 \(\Leftrightarrow\) \(1\ne0\)( luôn đúng)

Vậy hệ pt có nghiệm duy nhất \(\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Huyền
17 tháng 1 2018 lúc 22:55

3, \(\left\{{}\begin{matrix}\dfrac{3x}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x}{x+1}-\dfrac{5}{y+4}=9\end{matrix}\right.\) (I)

(ĐKXĐ: x+1 \(\ne\)0 ; y+4\(\ne\)0)

Đặt \(\dfrac{x}{x+1}=a\) ; \(\dfrac{1}{y+4}=b\)

hệ (I) trở thành:

\(\left\{{}\begin{matrix}3a-2b=4\\2a-5b=9\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}6a-4b=8\\6a-15b=27\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}11b=-19\\3a-2b=4\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=\dfrac{-19}{11}\\3a-2.\dfrac{-19}{11}=4\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}b=\dfrac{-19}{11}\\a=\dfrac{2}{11}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{x}{x+1}=\dfrac{2}{11}\\\dfrac{1}{y+4}=\dfrac{-19}{11}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2\left(x+1\right)=11x\\-19\left(y+4\right)=11\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x+2=11x\\-19y-76=11\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x-11x=-2\\-19y=87\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}-9x=-2\\y=\dfrac{-87}{19}\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=\dfrac{2}{9}\left(tm\right)\\y=\dfrac{-87}{19}\left(tm\right)\end{matrix}\right.\)

- Thay x = \(\dfrac{2}{9}\) vào x+1 \(\ne\)0 có:

\(\dfrac{2}{9}+1\ne0\) \(\Leftrightarrow\dfrac{11}{9}\ne0\) (luôn đúng)

- Thay y = \(\dfrac{-87}{19}\) vào y+4 \(\ne\) 0có:

\(\dfrac{-87}{19}+4\ne0\) \(\Leftrightarrow\dfrac{-11}{19}\ne0\) (luôn đúng)

vậy ...


Các câu hỏi tương tự
Linh Bùi
Xem chi tiết
Nguyễn Ngọc Nhã Hân
Xem chi tiết
Nguyễn Thanh Hằng
Xem chi tiết
Tuân Tỉn
Xem chi tiết
Tuân Tỉn
Xem chi tiết
Tuân Tỉn
Xem chi tiết
Vinh Duong Van
Xem chi tiết
Xem chi tiết
Tuân Tỉn
Xem chi tiết