- Đặt \(f\left(x\right)=\dfrac{2x-3}{19+8x}\)
- Lập bảng xét dấu :
- Từ bảng xét dấu : - Để : \(f\left(x\right)< 0\)
\(\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)
Vậy ...
Ta có: \(\dfrac{2x-3}{8x+19}< 0\)
Trường hợp 1: \(\left\{{}\begin{matrix}2x-3>0\\8x+19< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Trường hợp 2: \(\left\{{}\begin{matrix}2x-3< 0\\8x+19>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x>-\dfrac{19}{8}\end{matrix}\right.\Leftrightarrow-\dfrac{19}{8}< x< \dfrac{3}{2}\)
Vậy: S={x|\(-\dfrac{19}{8}< x< \dfrac{3}{2}\)}