Giải bpt
\(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{3x^2+5}}\le\dfrac{2}{\sqrt{x^2-2}+1}\)
Giải bpt
\(\sqrt{\dfrac{x^4+x^2+1}{x\left(x^2+1\right)}}\ge\sqrt{\dfrac{x^2+x+1}{x^2+1}}+2-\dfrac{x^2+1}{x}\)
giúp mình giải bpt vs
\(\dfrac{\left|2x-1\right|-x}{2x}>1;\dfrac{2-\left|x-2\right|}{x^2-1}\ge0;\dfrac{\sqrt{x+4}-2}{4-9x^2}\le0;\dfrac{x^2-2x-3}{\sqrt[3]{3x-1}+\sqrt[3]{4-5x}}\ge0;\)\(3x^2-10x+3\ge0;\left(\sqrt{2}-x\right)\left(x^2-2\right)\left(2x-4\right)< 0;\dfrac{1}{x+9}-\dfrac{1}{x}>\dfrac{1}{2};\dfrac{2}{1-2x}\le\dfrac{3}{x+1}\)
Giải bpt sau : $\sqrt{x^{2}-1}$ + $\sqrt{x^{2}-x}$ $\leq$ $\sqrt{x^{2}+x-2}$
giải bpt
1.\(\sqrt{5x+1}-\sqrt{4x-1}\le3\sqrt{x}\)
2.\(\frac{\sqrt{2\left(x^2-16\right)}}{\sqrt{x-3}}+\sqrt{x-3}>\frac{7-x}{\sqrt{x-}}\)
1. Biết rằng tập nghiệm của bpt \(\sqrt{2x-4}-2\sqrt{2-x}\ge\dfrac{6x-4}{5\sqrt{x^2+1}}\) là \(\left[a;b\right]\) . Tính P=3a-2b
2. Tính tổng các giá trị nguyên dương của m để tập nghiệm của bpt \(\sqrt{\dfrac{m}{72}x^2+1}< \sqrt{x}\) có chứa đúng 2 số nguyên
giải các BPT
1. \(\frac{1-\sqrt{1-4x^2}}{x}< 3\)
2.\(\sqrt[3]{2-x}+\sqrt{x-1}>1\)
3.\(x+\frac{x}{\sqrt{x^2-1}}>\frac{35}{12}\)
giải các BPT :
1. \(\sqrt{x^2-3x+2}+\sqrt{x^2-3x+16}>3\)
2.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}\le2x+2\)
3.\(\sqrt{2x-1}+\sqrt{3x-2}< \sqrt{4x-3}+\sqrt{5x-4}\)
giải bpt: \(\sqrt{x^2-x+1}+\sqrt{x^2+x+1}\ge2\)