2/ \(\left[{}\begin{matrix}x< -12\\x>12\end{matrix}\right.\)
- Với \(x< -12\Rightarrow x+\frac{12x}{\sqrt{x^2-144}}=x\left(1+\frac{12}{\sqrt{x^2-144}}\right)< 0< 35\)
\(\Rightarrow\) BPT luôn đúng
- Với \(x>12\), hai vế không âm, bình phương hai vế ta được:
\(x^2+\frac{144x^2}{x^2-144}+24\frac{x^2}{\sqrt{x^2-144}}-1225\le0\)
\(\Leftrightarrow\frac{x^4}{x^2-144}+24\frac{x^2}{\sqrt{x^2-144}}-1225\le0\)
\(\Leftrightarrow\left(\frac{x^2}{\sqrt{x^2-144}}+49\right)\left(\frac{x^2}{\sqrt{x^2-144}}-25\right)\le0\)
\(\Leftrightarrow\frac{x^2}{\sqrt{x^2-144}}-25\le0\)
\(\Leftrightarrow x^2\le25\sqrt{x^2-144}\)
\(\Leftrightarrow x^4-625x^2+90000\le0\)
\(\Leftrightarrow\left(x^2-400\right)\left(x^2-225\right)\le0\)
\(\Leftrightarrow225\le x^2\le400\)
\(\Leftrightarrow15\le x\le20\)
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x< -12\\15\le x\le20\end{matrix}\right.\)