+) Mô tả tập hợp D = {các hình vuông}
+) Mô tả tập hợp C = {các hình bình hành có hai đường chéo vuông góc} = {Các hình thoi}.
Thật vậy,
Xét tứ giác ABCD, là hình hình hành có hai đường chéo vuông góc.
Gọi \(AC \cap BD = O\) thì O là trung điểm của AC và BD.
Ta có: AO vừa là trung tuyến vừa là đường cao.
\( \Rightarrow \Delta ABD\) cân tại A.
\( \Rightarrow AB = AD\).
Tương tự ta cũng có: \(CB = CD\).
Mà \(AB = CD;\;AD = BC\).
Do đó: \(AB = CD = \;AD = BC\) hay tứ giác ABCD là hình thoi.
a) Vì nhiều hình thoi (các hình thoi không có góc nào vuông) thì không phải là hình vuông, nên \(C\not{ \subset }D\).
Vậy mệnh đề “\(C \subset D\)” sai.
b) Vì mỗi hình vuông cũng là một hình thoi (hình thoi đặc biệt: có một góc vuông), nên các phần tử của D cũng là phần tử của C. Hay \(C \supset D\)
Do đó mệnh đề “\(C \supset D\)” đúng.
c) Vì \(\left\{ \begin{array}{l}C \subset D\\C \supset D\end{array} \right.\;\; \Rightarrow C \ne D\)
Vậy mệnh đề “\(C = D\)” sai.