rút gọn biểu thức
a) A= \(2\sqrt{\frac{1}{2}}+\sqrt{18}\)
b) B= \(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5+3}\right)\)
c) C= \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\left(x>0,x\ne1\right)\)
d) D = \(\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x-2}}{x-1}\right)\left(x+\sqrt{x}\right)\left(x>0,x\ne1\right)\)
e) E = \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
bài 1: thực hiện phép tính
a, (\(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\)).\(\sqrt{3}\)
b, A=\(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\)
c, \(\frac{9\sqrt{5^2+3\sqrt{27}}}{\sqrt{5}+\sqrt{3}}\)
d, \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
e, (\(\sqrt{12}+\sqrt{15}+\sqrt{27}\)):\(\sqrt{15}\)
f, (12\(\sqrt{50}-8\sqrt{200}+7\sqrt{450}\)):\(\sqrt{10}\)
g, (\(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{\frac{9}{7}}\)):\(\sqrt{7}\)
bài 2:rút gọn rồi tính các giá trị biểu thức
a, A= \(\sqrt{\frac{\left(x-6\right)^4}{\left(5-x\right)^2}}\)+\(\frac{x^2-36}{x-5}\) (x<5) tại x=4
b, B=5x-\(\sqrt{125}\)+\(\frac{\sqrt{x^3+5x^2}}{\sqrt{x+5}}\) (x ≥ 0)tại x=\(\sqrt{5}\)
bài 1) rút gọn
1) 5√\(\frac{1}{5}\) 2)\(\frac{12}{5}\)√\(\frac{5}{4}\) 3)\(\frac{30}{5\sqrt{6}}\) 4) \(\frac{20}{2\sqrt{5}}\) 5)\(\frac{2-\sqrt{2}}{\sqrt{2}}\) 6) \(\frac{11+\sqrt{11}}{1+\sqrt{ }11}\) 7) \(\frac{\sqrt{21-\sqrt{7}}}{1-\sqrt{3}}\) 8)\(\frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{6}}\) 9)\(\frac{\sqrt{10-\sqrt{2}}}{\sqrt{5-}1}\) 10)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt[]{2}}\)
bài 2) với các biểu thức đã cho là có nghĩa và rút gọn
1)\(\frac{x-\sqrt{x}}{\sqrt{x}-1}\) 2)\(\frac{x\sqrt{x}-2x}{2-\sqrt{x}}\) 3) \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\) 4) \(\frac{a\sqrt{b}-\sqrt{a}}{\sqrt{b}-b\sqrt{a}}\) 5) \(\frac{a-1}{\sqrt{a}+1}\) 6) \(\frac{4-x}{2\sqrt{x}-x}\) 7)\(\frac{a+1+2\sqrt{a}}{1+\sqrt{a}}\) 8)\(\frac{3\sqrt{x}-x}{3+2\sqrt{3x}-x}\) 9)\(\frac{y+12-4\sqrt{3y}}{y-12}\) 10)\(\frac{4\sqrt{x}-x-4}{x-4}\) 11)\(\frac{x+y-2\sqrt{xy}}{x\sqrt{y}-y\sqrt{x}}\)
a) 1/2 * sqrt(x - 1) - sqrt(4x - 4) + 3 = 0 c) sqrt(7 - x + 1) = x b) sqrt(x ^ 2 - 4x + 4) + x - 2 = 0
1.So sánh
a) \(\sqrt{2002}+\sqrt{2004}\) và \(2\sqrt{2003}\)
b)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\) và \(\sqrt{2}\)
2. Rút gọn
a) \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\) với 0 ≤ a ≥ 1
b) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
d) \(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\)
e)\(\frac{\sqrt{a}-1}{a\sqrt{a}-a+\sqrt{a}}:\frac{1}{a^2+\sqrt{a}}\)
3. Giải phương trình
a)\(\frac{\sqrt{27x}}{\sqrt{3}}=6\)
b)\(\sqrt{x+1}=3-\sqrt{x}\)
c) \(\sqrt{2x+1}=2+\sqrt{x-3}\)
d) \(\sqrt{x-5}-\frac{x-14}{3+\sqrt{x-5}}=3\)
Cho biểu thức:\(\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{\sqrt{x}-\sqrt{y}}+\frac{3\sqrt{x}}{y-x}\)
a) Rút gọn
b) Tính A khi x=4, y=9
c) C/m : A<0 với x>y>0
A=\(\frac{3\sqrt{x}-6}{x-2\sqrt{x}}\) + \(\frac{\sqrt{x}-3}{\sqrt{x}}\) -\(\frac{1}{2-\sqrt{x}}\) (x>0, x≠4)
B=\(\frac{\sqrt{x}-2}{\sqrt{x}+9}\)
a) Tính B khi 2x=\(\frac{1}{\sqrt{2}-1}\)-\(\frac{1}{\sqrt{2}+1}\)
b)Rút gọn P=A.B
c)Tìm x nguyên để \(\sqrt{P}\)<\(\frac{1}{3}\)
bài 1:rut gọn
b,2\(\sqrt{3x}\) - \(\sqrt{75x}\)+ \(\frac{1}{2}\)\(\sqrt{48x}\)(x > 0)
c,(\(\sqrt{7}-\sqrt{3}\))2 + \(\sqrt{48}\)
d,\(\left(\frac{6-2\sqrt{2}}{3-\sqrt{2}}-\sqrt{2}-\frac{5}{\sqrt{5}}\right)\): \(\frac{1}{2}-\sqrt{5}\)
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)