Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Alice dono

1.So sánh

a) \(\sqrt{2002}+\sqrt{2004}\)\(2\sqrt{2003}\)

b)\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)\(\sqrt{2}\)

2. Rút gọn

a) \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\) với 0 ≤ a ≥ 1

b) \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)

c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)

d) \(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\)

e)\(\frac{\sqrt{a}-1}{a\sqrt{a}-a+\sqrt{a}}:\frac{1}{a^2+\sqrt{a}}\)

3. Giải phương trình

a)\(\frac{\sqrt{27x}}{\sqrt{3}}=6\)

b)\(\sqrt{x+1}=3-\sqrt{x}\)

c) \(\sqrt{2x+1}=2+\sqrt{x-3}\)

d) \(\sqrt{x-5}-\frac{x-14}{3+\sqrt{x-5}}=3\)

Nguyễn Lê Phước Thịnh
15 tháng 7 2020 lúc 9:13

Bài 1:

b) Ta có: \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(=\frac{\sqrt{2\left(4+\sqrt{7}\right)}}{\sqrt{2}}-\frac{\sqrt{2\left(4-\sqrt{7}\right)}}{\sqrt{2}}\)

\(=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}-\frac{\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\frac{\sqrt{7+2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}-\frac{\sqrt{7-2\cdot\sqrt{7}\cdot1+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}-\frac{\sqrt{\left(\sqrt{7}-1\right)^2}}{\sqrt{2}}\)

\(=\frac{\left|\sqrt{7}+1\right|}{\sqrt{2}}-\frac{\left|\sqrt{7}-1\right|}{\sqrt{2}}\)

\(=\frac{\sqrt{7}+1-\sqrt{7}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

Bài 2:

a) Ta có: \(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}-\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}\)

\(=\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)\)

\(=a-\sqrt{a}-a-\sqrt{a}\)

\(=-2\sqrt{a}\)

b) Ta có: \(\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)

\(=\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)

\(=\sqrt{ab}-\sqrt{ab}=0\)

d) Ta có: \(\frac{a+b+2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a-b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{a}+\sqrt{b}}-\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\sqrt{a}+\sqrt{b}-\left(\sqrt{a}+\sqrt{b}\right)\)

=0

Bài 3:

a) ĐKXĐ: x≥0

Ta có: \(\frac{\sqrt{27x}}{\sqrt{3}}=6\)

\(\Leftrightarrow\frac{\sqrt{27}\cdot\sqrt{x}}{\sqrt{3}}=6\)

\(\Leftrightarrow3\cdot\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=\frac{6}{3}=2\)

hay \(x=4\)(thỏa mãn)

Vậy: S={4}

b) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-1\end{matrix}\right.\Leftrightarrow x\ge0\)

Ta có: \(\sqrt{x+1}=3-\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{x+1}\right)^2=\left(3-\sqrt{x}\right)^2\)

\(\Leftrightarrow x+1=9-6\sqrt{x}+x\)

\(\Leftrightarrow x+1-9+6\sqrt{x}-x=0\)

\(\Leftrightarrow-8+6\sqrt{x}=0\)

\(\Leftrightarrow6\sqrt{x}=8\)

\(\Leftrightarrow\sqrt{x}=\frac{8}{6}=\frac{4}{3}\)

hay \(x=\frac{16}{9}\)(thỏa mãn)

Vậy: \(S=\left\{\frac{16}{9}\right\}\)


Các câu hỏi tương tự
Vivian Duong
Xem chi tiết
Nguyễn Dương
Xem chi tiết
Nguyễn Thanh Hòa
Xem chi tiết
Thuỷ Trần
Xem chi tiết
Trần Tuấn Kiệt
Xem chi tiết
Nguyễn Hà Phương
Xem chi tiết
Hiếu Minh
Xem chi tiết
Lê Diễm Quỳnh
Xem chi tiết
Trần Nam Hải
Xem chi tiết