a, \(\sqrt{5\left(1-\sqrt{2}\right)^2}=\sqrt{5}.\sqrt{\left(1-\sqrt{2}\right)^2}\)
\(=\sqrt{5}.\left(1-\sqrt{2}\right)=\sqrt{5}-\sqrt{5}.\sqrt{2}=\sqrt{5}-\sqrt{10}\)
b, \(\sqrt{27\left(2-\sqrt{5}\right)^2}=\sqrt{27}.\sqrt{\left(2-\sqrt{5}\right)^2}\)
\(=\sqrt{27}.\left(2-\sqrt{5}\right)=2\sqrt{27}-\sqrt{135}\)
c, \(\sqrt{\dfrac{2}{\left(3-\sqrt{10}\right)^2}}=\dfrac{\sqrt{2}}{\sqrt{\left(3-\sqrt{10}\right)^2}}\)
\(=\dfrac{\sqrt{2}}{3-\sqrt{10}}\)
d, \(\sqrt{\dfrac{5\left(1-\sqrt{3}\right)^2}{4}}=\dfrac{\sqrt{5\left(1-\sqrt{3}\right)^2}}{\sqrt{4}}\)
\(=\dfrac{\sqrt{5}.\left(1-\sqrt{3}\right)}{2}=\dfrac{\sqrt{5}-\sqrt{15}}{2}\)
Chúc bạn học tốt!!!
a) \(\sqrt{5\left(1-\sqrt{2}\right)^2}\)
= \(\sqrt{5}.\sqrt{\left(1-\sqrt{2}\right)^2}\)
= \(\sqrt{5}.\left(\sqrt{2}-1\right)\)
= \(\sqrt{10}-\sqrt{5}\)
b) \(\sqrt{27\left(2-\sqrt{5}\right)^2}\)
= \(\sqrt{27}.\sqrt{\left(2-\sqrt{5}\right)^2}\)
= \(\sqrt{27}.\left(\sqrt{5}-2\right)\)
= \(\sqrt{135}-2\sqrt{27}\)
c) \(\sqrt{\dfrac{2}{\left(3-\sqrt{10}\right)^2}}\)
= \(\dfrac{\sqrt{2}}{\sqrt{\left(3-\sqrt{10}\right)^2}}\)
= \(\dfrac{\sqrt{2}}{\sqrt{10}-3}\)
d) \(\sqrt{\dfrac{5\left(1-\sqrt{3}\right)^2}{4}}\)
= \(\dfrac{\sqrt{5}.\sqrt{\left(1-\sqrt{3}\right)^2}}{\sqrt{4}}\)
= \(\dfrac{\sqrt{5}.\left(\sqrt{3}-1\right)}{2}\)
= \(\dfrac{\sqrt{15}-\sqrt{5}}{2}\)