Đóng hai chiếc đinh cố định tại hai điểm \({F_1},{F_2}\) trên mặt một bảng gỗ. Lấy một thước thẳng có mép AB và một sợi dây không đàn hồi có chiều dài \(l\) thoả mãn\(AB--{F_1}{F_2}{\rm{ }} < l < AB\) . Đính một đầu dây vào điểm A và đầu dây kia vào \({F_2}\). Đặt thước sao cho điểm B trùng với \({F_1}\), và lấy đầu bút chì (kí hiệu là M) tì sát sợi dây vào thước thẳng sao cho sợi dây luôn bị căng. Sợi dây khi đó là đường gấp khúc\(AM{F_2}\) , Cho thước quay quanh điểm B (trùng \({F_1}\)), tức là điểm A chuyển động trên đường tròn tâm B có bán kính bằng độ dài đoạn thẳng AB, mép thước luôn áp sát mặt gỗ (Hình 53). Khi đó, đầu bút chì M sẽ vạch nên một đường mà ta gọi là đường hypebol. Khi M thay đổi, có nhận xét gì về hiệu\(M{F_1} - M{F_2}\) ?
Khi M thay đổi, hiệu \(M{F_1} - M{F_2} = \left( {M{F_1} + MA} \right) - \left( {M{F_2} + MA} \right) = AB - l{\rm{ }}\)không đổi.