Sửa đề: \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{6}=\dfrac{z}{8}\) và 3x - 2y - z = 13
Ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{9}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{6}=\dfrac{z}{8}\Rightarrow\dfrac{y}{12}=\dfrac{z}{16}\left(2\right)\)
Từ (1) và (2) suy ra:
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\Rightarrow\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{3x}{27}=\dfrac{2y}{24}=\dfrac{z}{16}=\dfrac{3x-2y-z}{27-24-16}=\dfrac{13}{-13}=-1\)
Với \(\dfrac{x}{9}=-1\Rightarrow x=-9\)
Với \(\dfrac{y}{12}=-1\Rightarrow y=-12\)
Với \(\dfrac{z}{8}=-1\Rightarrow z=-8\)
Vậy x=-9 ; y = -12 ; z = -8