Giải:
a) \(\left(\dfrac{1}{x}-3\right)\left(\dfrac{2}{3}x+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-3=0\\\dfrac{2}{3}x+\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=3\\\dfrac{2}{3}x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{4}\end{matrix}\right.\)
Vậy ...
b) \(\left|2x\right|-\left|-2,5\right|=\left|-7,5\right|\)
\(\Leftrightarrow\left|2x\right|-2,5=7,5\)
\(\Leftrightarrow\left|2x\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vây ...
c) \(x-7\ge0\Leftrightarrow x\ge7\)
\(\left|1-3x\right|=x-7\)
\(\Leftrightarrow\left[{}\begin{matrix}1-3x=x-7\\1-3x=7-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-3x-x=-7-1\\-3x+x=7-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-4x=-8\\-2x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(l\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy ...